期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
采用小波包ASGSO-RBF的采煤机滚动轴承故障诊断 被引量:1
1
作者 谢国民 张俊男 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第7期701-704,共4页
针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故障诊断方法.对振动传感器... 针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故障诊断方法.对振动传感器输出的信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法对小波包分解进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练ASGSO-RBF神经网络,建立诊断模型.实验结果表明:所建模型的故障辨识正确率达到95.8%以上,相较于其他算法模型具有更低的误报率和漏报率,诊断精度及诊断效率更高. 展开更多
关键词 采煤机滚动轴承 故障诊断模型 小波包 RBF神经网络 自适应步长萤火虫算法
下载PDF
基于数字孪生与PNN的滚动轴承故障诊断
2
作者 仲文君 易辉 +1 位作者 董露 柴宇恒 《制造业自动化》 2024年第10期26-32,共7页
针对采煤机滚动轴承故障诊断精度低、速度慢、无法实时监测其运行情况等问题,提出一种基于数字孪生和概率神经网络(Probabilistic Neural Network,PNN)的采煤机滚动轴承故障诊断方法。根据滚动轴承结构、运行的特点,建立基于数字孪生的... 针对采煤机滚动轴承故障诊断精度低、速度慢、无法实时监测其运行情况等问题,提出一种基于数字孪生和概率神经网络(Probabilistic Neural Network,PNN)的采煤机滚动轴承故障诊断方法。根据滚动轴承结构、运行的特点,建立基于数字孪生的故障诊断模型;采用改进的萤火虫优化算法(Firefly Algorithm,FA)求取最优的平滑因子并赋给PNN,得到最优的故障诊断模型,并将优化后的故障诊断模型封装到数字孪生体的行为模型中,进而构建高精度轴承数字孪生体进行实时故障诊断分析。实验结果表明,与优化前以及其他网络相比,所提方法的收敛速度更快且故障诊断精度更高,验证了所提方法的有效性与优越性。 展开更多
关键词 采煤机滚动轴承 数字孪生 概率神经网络 故障诊断 萤火虫优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部