The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principl...The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully.展开更多
The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions...The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions was also analysed based on the principle of expansion and reconsolidation of the broken rock strata, a equation to calculate the corresponding surface subsidence was finally produced. This calculation method can be used to calculate more accurately the convergence quantity of consolidated rocks in the broken zone of the working face. In addition, case analyses by using the introduced calculation method were conducted and satisfactory results were obtained.展开更多
In this paper, the effect of the remaining coal pillars in a room and pillar section on the long wall face in the lower coal bed are tested by using equivalent material models. The failure laws of the overburden under...In this paper, the effect of the remaining coal pillars in a room and pillar section on the long wall face in the lower coal bed are tested by using equivalent material models. The failure laws of the overburden under coal pillars are discussed. A phenomenon of sub weighting has been observed when long wall face is in process under the remaining pillars in room and pillar mining section. It is concluded that, because coal pillars underwent a course of the stress increasing before they were fully destroyed, the existence of the coal pillars would shorten the distance of periodical weighting of the main roof in the long wall face. Based on this, the characteristic equations of the overburden movement under coal pillars are presented.展开更多
基金National Natural Science Foundation(50674045)Youth Project of Hunan Education Office(04B020)
文摘The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully.
文摘The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions was also analysed based on the principle of expansion and reconsolidation of the broken rock strata, a equation to calculate the corresponding surface subsidence was finally produced. This calculation method can be used to calculate more accurately the convergence quantity of consolidated rocks in the broken zone of the working face. In addition, case analyses by using the introduced calculation method were conducted and satisfactory results were obtained.
文摘In this paper, the effect of the remaining coal pillars in a room and pillar section on the long wall face in the lower coal bed are tested by using equivalent material models. The failure laws of the overburden under coal pillars are discussed. A phenomenon of sub weighting has been observed when long wall face is in process under the remaining pillars in room and pillar mining section. It is concluded that, because coal pillars underwent a course of the stress increasing before they were fully destroyed, the existence of the coal pillars would shorten the distance of periodical weighting of the main roof in the long wall face. Based on this, the characteristic equations of the overburden movement under coal pillars are presented.