Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util...Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.展开更多
Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bend...Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bending moment for high-position,hard and thick strata were constructed by theoretical analysis,and the initial breaking position of high-position,hard and thick strata was also analyzed.The breaking process and evolution law of mining stress in high-position,hard and thick strata were studied by similar material simulation tests.Studies show that:due to the foundation deformation effect of the lower strata,the initial break position in high-position,hard thick layers is in the middle of goaf;vertical tension fractures first occur under the middle surface,then tilt tension fractures form at both sides and a non-uniform thickness of the fracture structure forms and produces subsidence deformation;behind the coal wall tilt fractures extend and eventually complete the migration.Mining stress produces obvious changes before and after the breakage of the high,hard and thick stratum;high stress concentration forms in front of the coal wall before breakage and fracture stress concentration significantly reduces after migration.Coal seam mining under high-position,hard thick strata can easily induce dynamic phenomena.展开更多
A test system was designed by using a set of self-made experimental devicesof coupled coal-gas in simulating mining stress effect, combining the equipment withRMT-150B rock mechanical experimental system, monitoring t...A test system was designed by using a set of self-made experimental devicesof coupled coal-gas in simulating mining stress effect, combining the equipment withRMT-150B rock mechanical experimental system, monitoring the rupture process ofcoal-rock with an acoustic emission (AE) device and collecting gas-flow rate andgas-stress data in real-time automatically with a gas flow-meter and gas pressure sensor.The fracture process and permeability properties test of the coal-rock in mining stress effect was carried out. Test results indicate that AE events and variation of stresses have thesame variance tendency and the rupture process of coal-rock can be monitored by AE.The relation curves among stresses, parameters of AE and permeability properties demonstrate that the permeability of coal-rock decreases gradually at quasi-elastic stage, increases gradually at plastic damage micro-fracture stage, rises suddenly near the peakpoint and has multi-variation at post-peak slip stage. From the results, such conclusioncan be drawn that the variation of permeability can be monitored by AE parameters orstress change.展开更多
Discharges and emissions in the coal mining process have a strong effect both on the environment and on human health. This problem is usually be a negative one and has only been recognized qualitatively, due to the la...Discharges and emissions in the coal mining process have a strong effect both on the environment and on human health. This problem is usually be a negative one and has only been recognized qualitatively, due to the lack of effective quantitative methods. Based on emergy theory and accounting methodology, a set of quantitative methods for accounting the environmental support due to pollutants emissions was first introduced. Then impacts on environment and effects on human health were quantified using the unified units. The results indicated that water pollutants caused more impacts on the environment than air pollutants did, i.e., more environmental contributions are needed to dilute and absorb water pollutants. The occupation of land caused by coal mining gangue waste stacking has led to a huge loss of environmental services over the years. Moreover, the potential damage on the human condition health caused by CO2 through climate change cannot be ignored. Finally, the impacts of mining activities on environmental and human health in unified units are shown to provide a quantitative insight into the disadvantage of coal mining. The comparable results of the method indicate the different influence of various pollutants and the contribution of 'natural capital' directly. This work is a part of ongoing thermodynamic input-output analysis and life cycle analysis of coal mining systems (which are in process.)展开更多
With the characteristics of coal seam geology and gas occurrence,a'ground-underground' integrated gas drainage method was formed,which can relieve gaspressure and increase permeability by mining the protection...With the characteristics of coal seam geology and gas occurrence,a'ground-underground' integrated gas drainage method was formed,which can relieve gaspressure and increase permeability by mining the protection seams in conditional regions.After coal seam gas drainage,high gas outburst seam was converted to low gas safetyseam.In the coal face mining process,safety and high efficient coal mining were realizedby the measure of gas-suction over mining.In addition to the drainage gas for civil gasand gas power generation,the Huaibei Mining Group has actively carried out research onthe utilization technology of methane drainage by ventilation.On the one hand,it can saveprecious energy;on the other hand,it can protect the environment for people's survival.In2007,the amount of coal mine gas drainage was 120 hm3;the rate of coal mine gasdrainage was 44%.Compared with the year 2002,the amount of coal mine gas drainageincreased by two times.Meanwhile,the utilization rate of gas increased rapidly.展开更多
文摘Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.
基金financially supported by the National Natural Science Foundation of China (No.51374139)the Natural Science Foundation of Shandong Province (No.ZR2013EEM018)the Scientific Research Innovation Team Support Plan of Shandong University of Science and Technology
文摘Based on the boundary support conditions of overlying high-position,hard and thick strata,a Winkler foundation beam mechanical model was built.Computational expressions for the characteristics and position of the bending moment for high-position,hard and thick strata were constructed by theoretical analysis,and the initial breaking position of high-position,hard and thick strata was also analyzed.The breaking process and evolution law of mining stress in high-position,hard and thick strata were studied by similar material simulation tests.Studies show that:due to the foundation deformation effect of the lower strata,the initial break position in high-position,hard thick layers is in the middle of goaf;vertical tension fractures first occur under the middle surface,then tilt tension fractures form at both sides and a non-uniform thickness of the fracture structure forms and produces subsidence deformation;behind the coal wall tilt fractures extend and eventually complete the migration.Mining stress produces obvious changes before and after the breakage of the high,hard and thick stratum;high stress concentration forms in front of the coal wall before breakage and fracture stress concentration significantly reduces after migration.Coal seam mining under high-position,hard thick strata can easily induce dynamic phenomena.
基金Supported by Significant Public Welfare Project of Henan Province (08110091500)the Research Fund for the Doctoral Program of Higher Education(20070460001 )National Nature Science Foundation of China(50478061)
文摘A test system was designed by using a set of self-made experimental devicesof coupled coal-gas in simulating mining stress effect, combining the equipment withRMT-150B rock mechanical experimental system, monitoring the rupture process ofcoal-rock with an acoustic emission (AE) device and collecting gas-flow rate andgas-stress data in real-time automatically with a gas flow-meter and gas pressure sensor.The fracture process and permeability properties test of the coal-rock in mining stress effect was carried out. Test results indicate that AE events and variation of stresses have thesame variance tendency and the rupture process of coal-rock can be monitored by AE.The relation curves among stresses, parameters of AE and permeability properties demonstrate that the permeability of coal-rock decreases gradually at quasi-elastic stage, increases gradually at plastic damage micro-fracture stage, rises suddenly near the peakpoint and has multi-variation at post-peak slip stage. From the results, such conclusioncan be drawn that the variation of permeability can be monitored by AE parameters orstress change.
基金Supported by the National Natural Science Foundation of China (41101560)
文摘Discharges and emissions in the coal mining process have a strong effect both on the environment and on human health. This problem is usually be a negative one and has only been recognized qualitatively, due to the lack of effective quantitative methods. Based on emergy theory and accounting methodology, a set of quantitative methods for accounting the environmental support due to pollutants emissions was first introduced. Then impacts on environment and effects on human health were quantified using the unified units. The results indicated that water pollutants caused more impacts on the environment than air pollutants did, i.e., more environmental contributions are needed to dilute and absorb water pollutants. The occupation of land caused by coal mining gangue waste stacking has led to a huge loss of environmental services over the years. Moreover, the potential damage on the human condition health caused by CO2 through climate change cannot be ignored. Finally, the impacts of mining activities on environmental and human health in unified units are shown to provide a quantitative insight into the disadvantage of coal mining. The comparable results of the method indicate the different influence of various pollutants and the contribution of 'natural capital' directly. This work is a part of ongoing thermodynamic input-output analysis and life cycle analysis of coal mining systems (which are in process.)
文摘With the characteristics of coal seam geology and gas occurrence,a'ground-underground' integrated gas drainage method was formed,which can relieve gaspressure and increase permeability by mining the protection seams in conditional regions.After coal seam gas drainage,high gas outburst seam was converted to low gas safetyseam.In the coal face mining process,safety and high efficient coal mining were realizedby the measure of gas-suction over mining.In addition to the drainage gas for civil gasand gas power generation,the Huaibei Mining Group has actively carried out research onthe utilization technology of methane drainage by ventilation.On the one hand,it can saveprecious energy;on the other hand,it can protect the environment for people's survival.In2007,the amount of coal mine gas drainage was 120 hm3;the rate of coal mine gasdrainage was 44%.Compared with the year 2002,the amount of coal mine gas drainageincreased by two times.Meanwhile,the utilization rate of gas increased rapidly.