Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, ...Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, and put forward a corresponding calculatingmodel demonstrated by practical example.The study provides mining areas,which are covered with a very thick Quaternary soil layer and abundant ground water, witha theoretical basis aimed at forecasting the settling of ground surface.展开更多
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.
文摘Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, and put forward a corresponding calculatingmodel demonstrated by practical example.The study provides mining areas,which are covered with a very thick Quaternary soil layer and abundant ground water, witha theoretical basis aimed at forecasting the settling of ground surface.