Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a no...Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.展开更多
Recently, privacy concerns about data collection have received an increasing amount of attention. In data collection process, a data collector (an agency) assumed that all respondents would be comfortable with submi...Recently, privacy concerns about data collection have received an increasing amount of attention. In data collection process, a data collector (an agency) assumed that all respondents would be comfortable with submitting their data if the published data was anonymous. We believe that this assumption is not realistic because the increase in privacy concerns causes some re- spondents to refuse participation or to submit inaccurate data to such agencies. If respondents submit inaccurate data, then the usefulness of the results from analysis of the collected data cannot be guaranteed. Furthermore, we note that the level of anonymity (i.e., k-anonymity) guaranteed by an agency cannot be verified by respondents since they generally do not have access to all of the data that is released. Therefore, we introduce the notion of ki-anonymity, where ki is the level of anonymity preferred by each respondent i. Instead of placing full trust in an agency, our solution increases respondent confidence by allowing each to decide the preferred level of protection. As such, our protocol ensures that respondents achieve their preferred kranonymity during data collection and guarantees that the collected records are genuine and useful for data analysis.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60075007) and the National Basic Research Program(973) of China (No. G1998030401)
文摘Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic feature subset selection method based on mutual information and redundancy-synergy coefficient. Our experiment results showed the good performance of the new feature selection method.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2014R1A1A2058695)
文摘Recently, privacy concerns about data collection have received an increasing amount of attention. In data collection process, a data collector (an agency) assumed that all respondents would be comfortable with submitting their data if the published data was anonymous. We believe that this assumption is not realistic because the increase in privacy concerns causes some re- spondents to refuse participation or to submit inaccurate data to such agencies. If respondents submit inaccurate data, then the usefulness of the results from analysis of the collected data cannot be guaranteed. Furthermore, we note that the level of anonymity (i.e., k-anonymity) guaranteed by an agency cannot be verified by respondents since they generally do not have access to all of the data that is released. Therefore, we introduce the notion of ki-anonymity, where ki is the level of anonymity preferred by each respondent i. Instead of placing full trust in an agency, our solution increases respondent confidence by allowing each to decide the preferred level of protection. As such, our protocol ensures that respondents achieve their preferred kranonymity during data collection and guarantees that the collected records are genuine and useful for data analysis.