针对现有昆虫飞行信息采集方法中存在的采集数据量大、采集效率低和束缚实验对象等问题,设计了一种基于视觉检测技术的自动化采集装置。该装置主要包括障碍通道模块、运动触发采集模块、飞行轨迹信息模块和自动采集控制系统。首先,根据...针对现有昆虫飞行信息采集方法中存在的采集数据量大、采集效率低和束缚实验对象等问题,设计了一种基于视觉检测技术的自动化采集装置。该装置主要包括障碍通道模块、运动触发采集模块、飞行轨迹信息模块和自动采集控制系统。首先,根据控制功能的需求设计了间隙控制器,采用激光测距传感器和步进电机等硬件实现了闭环控制;其次,采用STM32微控制器为控制终端,并结合运动方向检测算法触发Blackfly S USB3高速相机,实现昆虫在指定运动方向的序列图像采集;然后,利用开源计算机视觉库OpenCV分析采集的序列图像,获取昆虫的飞行轨迹信息;最后,通过嵌入式控制系统协调各模块之间的通信,以达到高效、稳定获取昆虫飞行信息的设计要求。为了验证该装置的适用性和准确率,选取中华蜜蜂进行穿越间隙的实验,实验结果表明:在静态环境中,该装置能获取完整、清晰的飞行序列图像,平均准确率达到73.24%,采集性能稳定,有效提升了采集效率。通过分析蜜蜂的飞行轨迹信息,推断出其识别间隙的机制与横向运动的幅度和速度存在联系,这为深度研究蜜蜂的飞行机制提供了支持。展开更多
文摘针对现有昆虫飞行信息采集方法中存在的采集数据量大、采集效率低和束缚实验对象等问题,设计了一种基于视觉检测技术的自动化采集装置。该装置主要包括障碍通道模块、运动触发采集模块、飞行轨迹信息模块和自动采集控制系统。首先,根据控制功能的需求设计了间隙控制器,采用激光测距传感器和步进电机等硬件实现了闭环控制;其次,采用STM32微控制器为控制终端,并结合运动方向检测算法触发Blackfly S USB3高速相机,实现昆虫在指定运动方向的序列图像采集;然后,利用开源计算机视觉库OpenCV分析采集的序列图像,获取昆虫的飞行轨迹信息;最后,通过嵌入式控制系统协调各模块之间的通信,以达到高效、稳定获取昆虫飞行信息的设计要求。为了验证该装置的适用性和准确率,选取中华蜜蜂进行穿越间隙的实验,实验结果表明:在静态环境中,该装置能获取完整、清晰的飞行序列图像,平均准确率达到73.24%,采集性能稳定,有效提升了采集效率。通过分析蜜蜂的飞行轨迹信息,推断出其识别间隙的机制与横向运动的幅度和速度存在联系,这为深度研究蜜蜂的飞行机制提供了支持。