This paper discusses the first eigenvalue on a compact Riemann manifold with the negative lower bound Ricci curvature. Let M be a compact Riemann manifold with the Ricci curvature≥-R, R=const. ≥0 and d is the diamet...This paper discusses the first eigenvalue on a compact Riemann manifold with the negative lower bound Ricci curvature. Let M be a compact Riemann manifold with the Ricci curvature≥-R, R=const. ≥0 and d is the diameter of M. Our main result is that the first eigenvalue λ1 of M satisfies λ1≥π^2/d^2-0.518R.展开更多
基金Supported by the NNSF of China(10271011)Supported by LIMB of the Ministry of Education China
文摘This paper discusses the first eigenvalue on a compact Riemann manifold with the negative lower bound Ricci curvature. Let M be a compact Riemann manifold with the Ricci curvature≥-R, R=const. ≥0 and d is the diameter of M. Our main result is that the first eigenvalue λ1 of M satisfies λ1≥π^2/d^2-0.518R.