The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With th...The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.展开更多
In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear fo...In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.展开更多
The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus...The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.展开更多
In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, includ- ing blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a dou...In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, includ- ing blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Kortcweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the com- plex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. BUAA-SKLSDE-09KF-04+2 种基金Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006Chinese Ministry of Education, and Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201010772020
文摘The modified Korteweg-de Vries (mKdV) typed equations can be used to describe certain nonlinear phenomena in fluids, plasmas, and optics. In this paper, the discretized mKdV lattice equation is investigated. With the aid of symbolic computation, the discrete matrix spectral problem for that system is constructed. Darboux transformation for that system is established based on the resulting spectral problem. Explicit solutions are derived via the Darboux transformation. Structures of those solutions are shown graphically, which might be helpful to understand some physical processes in fluids, plasmas, and optics.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023by the Slpported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and As tronautics+2 种基金by the Specialized Research Fund for the Doctoral Program of Higher Educatioi under Grant No.200800130006Chinese Ministry of Education,and by the Innovation Foundation for Ph.D.Graduates under Grant Nos.30-0350 and 30-0366Beijing University of Aeronautics and Astronautics
文摘In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.
文摘The new inversion formula of the Laplace transform is considered. In the formula we use only the positive values ofx SiCoLT(x) = c S(x), L(S(x)) = T(x), c = const., x 〉 O,from the real axis. Si is the sinus transform, Co is the cosines transform of Fourier and L is the Laplace transform.
基金Supported by the National Science Council of the Republic of China under Grant No.NSC101-2115-M-126-002the National Natural Science Foundation of China under Grant No.11371241Project of "The First-class Discipline of Universities in Shanghai"
文摘In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, includ- ing blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Kortcweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the com- plex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.