Given sustaining exploration, the eastern zone of the Sulige gas field may soon become a key area of exploitation. In order to explore its genesis, types and distribution of the reservoir sandstones in the eastern zon...Given sustaining exploration, the eastern zone of the Sulige gas field may soon become a key area of exploitation. In order to explore its genesis, types and distribution of the reservoir sandstones in the eastern zone of this gas field, we focused in our study on the provenance and detailed sedimentary facies of sandstone of the He8 (the eighth part of the Shihezi formation, Permian system) and Shanxil (the first part of the Shanxi formation, Permian system) members, based on core observations, analyses in petrography, granularity and logging. The results show that: 1) the sandstone provenance of Shanxil and He8 in the eastern zone of the Sulige gas field is from the north of the Ordos Basin, characterized by dual directions from the north and northeast. 2) The He8 and Shanxil members were deposited in a fluvial-delta sedimentary system. The He8 was mainly deposited in braided rivers, in- cluding braided channels, channel bars, levee and floodplain sub-environments, whereas the Shanxil Member was deposited in braided rivers and deltas, including braided channels, channel bars, floodplains, tributaries and inter-tributary sub-environments. 3) Sedimentary facies bands migrated in drastic fashion towards the basin from the Shanxil to the He8 Member. Base levels of sedi- mentation generally present a trend of small increases in-amplitude, large decreasing amplitudes and slow and gradual Increases. 4) The continuity of the reservoir sandbodies along the source direction is better than that perpendicular to the direction. Compared with Shanxil, both dimensions and continuity of the sandbodies in He8 are better from which we conclude that it is the most fa- vorable part of the reservoir.展开更多
It is becoming an important controlling factor of gas exploration and exploitation in the east part of Sulige gas field in the Ordos Basin where the reservoir of main gas formations is tight sandstones. Employing expe...It is becoming an important controlling factor of gas exploration and exploitation in the east part of Sulige gas field in the Ordos Basin where the reservoir of main gas formations is tight sandstones. Employing experimental methods of slice identification, casting slice, scan electron microscope, and X-ray diffrac- tions, we studied the characteristics of petrology and diagenesis on reservoirs in Shanl section of Shanxi formation and He8 section of Shihezi formation of the Permian system in the East II part of Sulige gas field. The results include: (1) the main sandstones in these areas are dominated by lithic sandstone and litbic silicarenite with low grade of maturity; (2) the diagenesis of sandstone in these areas mainly include compaction, cementation, corrosion and alteration. Conclusions are as follows: (1) the diagenetic stage reached period B of the middle diagenetic stage; (2) the early diagenetic compaction is one of the main factors to decreasing porosity; (3) the secondary pores formed by corrosion in acidity medium con- ditions in period A of the middle diagenetic stage can distinctly ameliorate the poor reservoir capability of sandstone and, (4) cementation in period B of the middle diagenetic stage is the most important factor leading; to poor physical property of sandstone reservoirs.展开更多
Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrad...Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone展开更多
基金supported by the National Basic Re-search Program of China (No2003CB214603)
文摘Given sustaining exploration, the eastern zone of the Sulige gas field may soon become a key area of exploitation. In order to explore its genesis, types and distribution of the reservoir sandstones in the eastern zone of this gas field, we focused in our study on the provenance and detailed sedimentary facies of sandstone of the He8 (the eighth part of the Shihezi formation, Permian system) and Shanxil (the first part of the Shanxi formation, Permian system) members, based on core observations, analyses in petrography, granularity and logging. The results show that: 1) the sandstone provenance of Shanxil and He8 in the eastern zone of the Sulige gas field is from the north of the Ordos Basin, characterized by dual directions from the north and northeast. 2) The He8 and Shanxil members were deposited in a fluvial-delta sedimentary system. The He8 was mainly deposited in braided rivers, in- cluding braided channels, channel bars, levee and floodplain sub-environments, whereas the Shanxil Member was deposited in braided rivers and deltas, including braided channels, channel bars, floodplains, tributaries and inter-tributary sub-environments. 3) Sedimentary facies bands migrated in drastic fashion towards the basin from the Shanxil to the He8 Member. Base levels of sedi- mentation generally present a trend of small increases in-amplitude, large decreasing amplitudes and slow and gradual Increases. 4) The continuity of the reservoir sandbodies along the source direction is better than that perpendicular to the direction. Compared with Shanxil, both dimensions and continuity of the sandbodies in He8 are better from which we conclude that it is the most fa- vorable part of the reservoir.
基金supported by the Science Development Project of Shandong Province (No.2009GG20001021-07)the Open Fund of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (No. DMSM200803)the SDUST Research Fund (No.2010KYTD103)
文摘It is becoming an important controlling factor of gas exploration and exploitation in the east part of Sulige gas field in the Ordos Basin where the reservoir of main gas formations is tight sandstones. Employing experimental methods of slice identification, casting slice, scan electron microscope, and X-ray diffrac- tions, we studied the characteristics of petrology and diagenesis on reservoirs in Shanl section of Shanxi formation and He8 section of Shihezi formation of the Permian system in the East II part of Sulige gas field. The results include: (1) the main sandstones in these areas are dominated by lithic sandstone and litbic silicarenite with low grade of maturity; (2) the diagenesis of sandstone in these areas mainly include compaction, cementation, corrosion and alteration. Conclusions are as follows: (1) the diagenetic stage reached period B of the middle diagenetic stage; (2) the early diagenetic compaction is one of the main factors to decreasing porosity; (3) the secondary pores formed by corrosion in acidity medium con- ditions in period A of the middle diagenetic stage can distinctly ameliorate the poor reservoir capability of sandstone and, (4) cementation in period B of the middle diagenetic stage is the most important factor leading; to poor physical property of sandstone reservoirs.
基金financially supported by the National Natural Science Foundation of China (Grant No.41272158 and 41172136)
文摘Light hydrocarbons (LHs) are one of the main petroleum fractions in crude oils, and carry much infor- mation regarding the genetic origin and alteration of crude oils. But secondary alterations--especially biodegrada- tion--have a significant effect on the composition of LHs in crude oils. Because most of the LHs affected in oils underwent only slight biodegradation (rank 1 on the biodegradation scale), the variation of LHs can be used to describe more the refined features of biodegradation. Here, 23 crude oils from the Dawanqi Oilfield in the Tarim Basin, NW China, eleven of which have been biodegraded to different extents, were analyzed in order to investigate the effect of slight to minor biodegradation on C6--C7 LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes, followed by branched alkanes. In slight and minor biodegraded oils, such biodegradation scale could not sufficiently affect C6- C7 cycloalkanes. For branched C6--C7 alkanes, generally, monomethylalkanes are biodegraded earlier than dimethylalkanes and trimethylalkanes, which indicates that branched alkanes are more resistant to biodegradation, with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-Cv LHs. There is a particular case: although 2,2,3-trimethylbutane has a rela- tive higher alkylation degree, 2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane. 2,2- Dimethylpentane is the most resistant to biodegradation in branched C6-C7 alkanes. Furthermore, the 2-methylpen- tane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation, which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain iso- mers. The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation. With increasing biodegradation, Mango's LH parameters K1 values decrease and K2 values increase, the values of n-heptane and isoheptane decrease, and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils. Because biodegraded samples belong to slight or minor biodegraded oils, the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the "Biodegraded" zone. When the heptane value is 0-21 and the isoheptane value is 0-2.6, the crude oil in Dawanqi Oilfield is defined as the "Biodegraded" zone