期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
知识定义算力网络下的重击流智能流量调度机制
1
作者 粘英璞 易波 +2 位作者 李沛辰 王兴伟 黄敏 《计算机科学》 CSCD 北大核心 2024年第12期20-29,共10页
当前,知识定义网络赋能AI技术发展,算力网络提供AI所需算力资源,二者逐渐趋于融合,形成了知识定义算力网络(Knowledge Defined Computing Networking,KDCN)。KDCN赋能发展了诸多新型网络应用,如元宇宙、AR/VR、东数西算等,这些新型应用... 当前,知识定义网络赋能AI技术发展,算力网络提供AI所需算力资源,二者逐渐趋于融合,形成了知识定义算力网络(Knowledge Defined Computing Networking,KDCN)。KDCN赋能发展了诸多新型网络应用,如元宇宙、AR/VR、东数西算等,这些新型应用对算力资源和网络资源有极大的需求,被称为重击流(Heavy Hitter,HH)。HH流的存在严重加剧了KDCN网络的拥塞情况。针对这一挑战,提出了一种智能流量调度机制,旨在通过深度Q神经网络来解决KDCN中的拥塞问题。相较于离线训练过程,通过流量数据检测与采集、在模型训练和拥塞流调决策之间建立实时闭环,来实现深度Q神经网络模型的在线训练。基于该闭环控制,智能流调模型通过不断学习可以实现持续演化,并用于提供实时决策。实验结果表明,该算法在资源利用率、吞吐量、平均丢包率等方面优于现有方法。 展开更多
关键词 知识定义算力网络 深度Q神经网络 智能拥塞 重击流 闭环控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部