We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characterist...We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.展开更多
Measurements of non-tidal variations of gravity (Ag), which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region), are interpreted together with GPS...Measurements of non-tidal variations of gravity (Ag), which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region), are interpreted together with GPS (Global Position System) observation data, which were obtained from 2000 to 2013 at the same station. An absolute gravimeter was used for gravity observation. The strongest precision requirements concern tidal gravity prediction. It is the reason why we investigated tidal effect by LCR (LaCoste & Romberg) gravimeter from 1996 to 1997 at the same station. We use tested tidal model for correction of gravity change. The linear component of gravity variations corresponds to changes in the elevation of the site. The correlation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (August 27, 2008, Mw = 6.5) were caused by a combined effect of the change of the site's elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by modeling based on the available seismic data.展开更多
Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of th...Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of the Yushu Ms7. 1 earthquake. Based on rectangular dislocation theory in an elastic-viscoelastic layered medium, we have simulated the co- seismic deformation and gravity change with gravitational effect considered. The pictures show that the absolute gravity measuring point is beside the extremum of coseismic gravity change, and the numerical value reaches 25.02 x 10-Sm. s-2. After a discussion about the gravity changes before the earthquake and the coherence consistency between two FG-5 absolute gravimeters, we think that the measured value 27.2 × 10^-8 m· s^-2 at Yushu station is coseismic gravity change. It's coincident with the simulation results based on dislocation theory. Therefore it is a good tool to test the near-field changes found by dislocation theory.展开更多
In this paper,the effects of foundation damage and water-level change on vibration characteristics of gravity-type caisson structure are examined by analyzing modal parameters extracted from output-only information.To...In this paper,the effects of foundation damage and water-level change on vibration characteristics of gravity-type caisson structure are examined by analyzing modal parameters extracted from output-only information.To achieve the objective,the following approaches are implemented.Firstly,vibration response analysis methods are selected to estimate power spectral density and modal parameters such as natural frequency,damping ratio and mode shape of a lab-scale caisson structural system.Secondly,vibration tests on the lab-scale caisson system are performed under a series of test scenarios which include three water-level changes and three damage levels.Thirdly,experimental modal parameters corresponding to the damaging cases as well as the water level cases are extracted by frequency domain decomposition method and stochastic subspace identification method.Finally,the effects of the water-level variation and foundation damage on the extracted modal parameters are examined to assess the feasibility of the vibration-based damage detection in gravity-type caisson structures under water-level uncertainty.展开更多
基金supported by the Science for Earthquake Resilience(No.XH17058Y)Science and Technology Innovation Fund of the First Crust Monitoring and Application Center,CEA(No.FMC2016004)Special Program for Basic Work of the Ministry of Science and Technology,China(No.2015FY210403)
文摘We evaluated 2011-2015 mobile relative gravity data from the Hexi monitoring network that covers the epicenter of the 2016 Menyuan Ms6.4 earthquake, Qinghai Province, China and examined the spatiotemporal characteristics of the gravity field at the focal depth. In addition, we assessed the regional gravity field and its variation the half-year before the earthquake. We use first different interpolation algorithms to build a grid for the gravity data and then introduce potential field interpolation-cutting separation techniques and adaptive noise filtering. The results suggest that the gravity filed at the focal depth of 11.12 km separated from the total gravity field at about -400-150 ×10^-8 m/s^2 in the second half of 2015, which is larger than that in the same period in 2011 to 2014 (±30×10^-8 m/s^2). Moreover, at the same time, the gravity field changed fast from September 2014 to May 2015 and May 2015 to September 2015, reflecting to some extent material migration deep in the crust before the Menyuan earthquake.
文摘Measurements of non-tidal variations of gravity (Ag), which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region), are interpreted together with GPS (Global Position System) observation data, which were obtained from 2000 to 2013 at the same station. An absolute gravimeter was used for gravity observation. The strongest precision requirements concern tidal gravity prediction. It is the reason why we investigated tidal effect by LCR (LaCoste & Romberg) gravimeter from 1996 to 1997 at the same station. We use tested tidal model for correction of gravity change. The linear component of gravity variations corresponds to changes in the elevation of the site. The correlation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (August 27, 2008, Mw = 6.5) were caused by a combined effect of the change of the site's elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by modeling based on the available seismic data.
基金funded by the National Natural Science Foundation of China(41104049)the Earthquake Situation Tracking,CEA(2012020207)Scientific Investigation of Yushu M S 7.1 Earthquake,CEA(2060302)
文摘Using the results of aftershock relocation, inversion on seismic waves and InSAR results, and surface rupture displacements obtained by geological survey after the earthquake, this paper constructs a fault model of the Yushu Ms7. 1 earthquake. Based on rectangular dislocation theory in an elastic-viscoelastic layered medium, we have simulated the co- seismic deformation and gravity change with gravitational effect considered. The pictures show that the absolute gravity measuring point is beside the extremum of coseismic gravity change, and the numerical value reaches 25.02 x 10-Sm. s-2. After a discussion about the gravity changes before the earthquake and the coherence consistency between two FG-5 absolute gravimeters, we think that the measured value 27.2 × 10^-8 m· s^-2 at Yushu station is coseismic gravity change. It's coincident with the simulation results based on dislocation theory. Therefore it is a good tool to test the near-field changes found by dislocation theory.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry ofEducation,Science and Technology(Grant no.NRF-2013R1A1A2A10012040)the financial support of the project Development of Inspection Equipment Technology for Harbor Facilities funded by Korea Ministry of Land,Transportation,and Maritime Affairs
文摘In this paper,the effects of foundation damage and water-level change on vibration characteristics of gravity-type caisson structure are examined by analyzing modal parameters extracted from output-only information.To achieve the objective,the following approaches are implemented.Firstly,vibration response analysis methods are selected to estimate power spectral density and modal parameters such as natural frequency,damping ratio and mode shape of a lab-scale caisson structural system.Secondly,vibration tests on the lab-scale caisson system are performed under a series of test scenarios which include three water-level changes and three damage levels.Thirdly,experimental modal parameters corresponding to the damaging cases as well as the water level cases are extracted by frequency domain decomposition method and stochastic subspace identification method.Finally,the effects of the water-level variation and foundation damage on the extracted modal parameters are examined to assess the feasibility of the vibration-based damage detection in gravity-type caisson structures under water-level uncertainty.