Since the mid-twentieth century, most cities worldwide have undergone a rapid expansion in urban land use. Along with the expansion, several problems, such as excessive loss of prime agricultural land and increasing t...Since the mid-twentieth century, most cities worldwide have undergone a rapid expansion in urban land use. Along with the expansion, several problems, such as excessive loss of prime agricultural land and increasing traffic congestion have arisen. Thus, understanding and measurements of the expansion scale and its speed are crucial to planners and officials during urban planning and management processes. To measure such geographic phenomena, Shannon first devised entropy theory, and then Batty developed it into spatial entropy. The recently developed spatial entropy model, which was used to measure urban sprawl, introduced area to represent spatial asymmetry. However, most models did not consider spatial discretization, particularly the impact of distance. This study attempted to construct an integrated gravity-spatial entropy model to delineate distance and spatial diffusion impacts on population distribution. Then, we tested the model using Shanghai's temporal land use and community statistical data. Application results for the new gravity-spatial model show that it is a useful tool for identifying spatial and temporal variations of urban sprawl.展开更多
基金the Fundamental Research Funds for the Central Universities (Grant No. 2572014CB20)Heilongjiang Province Postdoctoral Science Foundation (Grant No. LBH-Z10279)the Scientific Research Foundation for Returned Overseas Chinese Scholars, Heilongjiang Province (Grant No. LC2013C13)
文摘Since the mid-twentieth century, most cities worldwide have undergone a rapid expansion in urban land use. Along with the expansion, several problems, such as excessive loss of prime agricultural land and increasing traffic congestion have arisen. Thus, understanding and measurements of the expansion scale and its speed are crucial to planners and officials during urban planning and management processes. To measure such geographic phenomena, Shannon first devised entropy theory, and then Batty developed it into spatial entropy. The recently developed spatial entropy model, which was used to measure urban sprawl, introduced area to represent spatial asymmetry. However, most models did not consider spatial discretization, particularly the impact of distance. This study attempted to construct an integrated gravity-spatial entropy model to delineate distance and spatial diffusion impacts on population distribution. Then, we tested the model using Shanghai's temporal land use and community statistical data. Application results for the new gravity-spatial model show that it is a useful tool for identifying spatial and temporal variations of urban sprawl.