Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effe...Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed.展开更多
The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan statio...The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan station,Beijing where there are two different gravimeters( namely,L&R-804 and PET-031). Based on the original raw tidal records of two gravimeters from 2008 to 2011,we first remove various interference from raw data by the standard procedure software-Tsoft; then we model the solid earth tides, ocean tidal loading and pole tide through related parameters; after that we adopt a new segmented polynomial fitting method based on Tsoft to fit the complex drift of spring gravimeter; and finally we calculate the atmospheric loading effects by a linear regression model. After a series of processing we gain the non-tidal variation of the two gravimeters at Baijiatuan site,Beijing. Furthermore,to analyze the non-tidal variation preliminarily,we study the main component of related tidal data by power spectral density. Comparing the non-tidal variation of two different gravimeters,we find seasonal fluctuations in non-tidal results, which are in accordance with the water storage change. Therefore,we take into account the relevance of gravity changes and water storage based on the gravity data of GRACE and water data of the CMAP model from 2003 to 2011 at different sites in the Chinese mainland( Beijing, Chengdu, Shenyang and Shiquanhe), and make a preliminary analysis on the relationship between gravity changes and water storage.展开更多
Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorit...Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorithm, is proposed in this paper. The algorithm is based on the principle of least mean-square-error criterion, and searches for a certain matched trajectory that runs parallel to a trace indicated by an inertial navigation system on a gravity base map. A rotation is then made clockwise or counterclockwise through a certain angle around the matched trajectory to look for an optimal matched trajectory within a certain angle span range, and through weighted fitting with another eight suboptimal matched trajectories, the endpoint of the fitted trajectory is considered the optimal matched position. In analysis of the algorithm reliability and matching error, the results from simulation indicate that the optimal position can be obtained effectively in real time, and the positioning accuracy improves by 35% and up to 1.05 nautical miles using the proposed algorithm compared with using the widely employed TERCOM and SITAN methods. Current gravity-aided navigation can benefit from implementation of this new algorithm in terms of better reliability and positioning accuracy.展开更多
We use the newly released observational H(z) data (OHD), the Cosmic Microwave Background (CMB) shift parameter, and the Baryon Acoustic Oscillation (BAO) measurements data to constrain cosmological parameters of f(R) ...We use the newly released observational H(z) data (OHD), the Cosmic Microwave Background (CMB) shift parameter, and the Baryon Acoustic Oscillation (BAO) measurements data to constrain cosmological parameters of f(R) gravity in Palatini formalism in which the f(R) form is defined as f(R) = R β/Rn. Under the assumption of a spatially flat FRW universe, we get the best fitting results of the free parameters (Ωm0, n). In the calculation, we marginalize the likelihood function over H0 by integrating the probability density P ∝ e-χ2/2 to obtain the best fitting results and the confidence regions in the Ωm0-n plane. The constraints results of (Ωm0, n) = (0.33, 0.41) by OHD only and (Ωm0, n) = (0.23, 0.08) by the combination of OHD+CMB+BAO both indicate that the universe goes through three last phases, i.e., radiation dominated, matter-dominated, and late time accelerated expansion without introduction of dark energy.展开更多
基金Funded by the Natural Science Foundation of China (No. 40504002)the 973 Program of China (No. 2006CB701301).
文摘Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed.
基金sponsored by the Basic Scientific Research of Institute of Geophysics,CEA(DQJB12B20,DQJB12C03,DQJB12B14)
文摘The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan station,Beijing where there are two different gravimeters( namely,L&R-804 and PET-031). Based on the original raw tidal records of two gravimeters from 2008 to 2011,we first remove various interference from raw data by the standard procedure software-Tsoft; then we model the solid earth tides, ocean tidal loading and pole tide through related parameters; after that we adopt a new segmented polynomial fitting method based on Tsoft to fit the complex drift of spring gravimeter; and finally we calculate the atmospheric loading effects by a linear regression model. After a series of processing we gain the non-tidal variation of the two gravimeters at Baijiatuan site,Beijing. Furthermore,to analyze the non-tidal variation preliminarily,we study the main component of related tidal data by power spectral density. Comparing the non-tidal variation of two different gravimeters,we find seasonal fluctuations in non-tidal results, which are in accordance with the water storage change. Therefore,we take into account the relevance of gravity changes and water storage based on the gravity data of GRACE and water data of the CMAP model from 2003 to 2011 at different sites in the Chinese mainland( Beijing, Chengdu, Shenyang and Shiquanhe), and make a preliminary analysis on the relationship between gravity changes and water storage.
基金supported by National Natural Science Foundation of China (Grant Nos. 41074051, 41021003 and 40874037)
文摘Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorithm, is proposed in this paper. The algorithm is based on the principle of least mean-square-error criterion, and searches for a certain matched trajectory that runs parallel to a trace indicated by an inertial navigation system on a gravity base map. A rotation is then made clockwise or counterclockwise through a certain angle around the matched trajectory to look for an optimal matched trajectory within a certain angle span range, and through weighted fitting with another eight suboptimal matched trajectories, the endpoint of the fitted trajectory is considered the optimal matched position. In analysis of the algorithm reliability and matching error, the results from simulation indicate that the optimal position can be obtained effectively in real time, and the positioning accuracy improves by 35% and up to 1.05 nautical miles using the proposed algorithm compared with using the widely employed TERCOM and SITAN methods. Current gravity-aided navigation can benefit from implementation of this new algorithm in terms of better reliability and positioning accuracy.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10773002 and 10875012)the Scientific Research Foundation of Beijing Normal University (Grant No. 105116)
文摘We use the newly released observational H(z) data (OHD), the Cosmic Microwave Background (CMB) shift parameter, and the Baryon Acoustic Oscillation (BAO) measurements data to constrain cosmological parameters of f(R) gravity in Palatini formalism in which the f(R) form is defined as f(R) = R β/Rn. Under the assumption of a spatially flat FRW universe, we get the best fitting results of the free parameters (Ωm0, n). In the calculation, we marginalize the likelihood function over H0 by integrating the probability density P ∝ e-χ2/2 to obtain the best fitting results and the confidence regions in the Ωm0-n plane. The constraints results of (Ωm0, n) = (0.33, 0.41) by OHD only and (Ωm0, n) = (0.23, 0.08) by the combination of OHD+CMB+BAO both indicate that the universe goes through three last phases, i.e., radiation dominated, matter-dominated, and late time accelerated expansion without introduction of dark energy.