In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fl...In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fluxes are sensitive to observation errors, increasing the error of model calculation; In contrast, the latent heat flux and momentum flux are not as sensitive to observation errors as the sensible heat, and their calculated results are reliable. The test result also verifies the rationality of the surface flux values calculated and the conclusions can be used to detect errors in observed data.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
In several parts of the world, disposal of waste materials such as fly ash is a great problem. Application of waste materials as structural fills in foundations is one of the best solutions to disposal problems, becau...In several parts of the world, disposal of waste materials such as fly ash is a great problem. Application of waste materials as structural fills in foundations is one of the best solutions to disposal problems, because wastes can be used in large volumes in such applications. There may be difficulty due to poor load-bearing capacity of fly ash, especially when footing rests on the top of the fly ash fill slope. Inclusion of polymeric reinforcements as horizontal sheets within the fill may be one of the most viable solutions to improving the load-bearing capacity of reinforced fly ash slope, and it is particularly important for the situations where foundations need to be located either on the top of a slope or on slope itself. The present work is aimed at investigating the efficacy of a single layer of reinforcement in improving the lo, ad-bearing capacity when it gets incorporated within the body of a model fly ash embankment slope. An increase in load bearing capacity due to the incorporation of reinforcement in the model slope was found by conducting laboratory tests. Experimental results were compared by numerical values obtained using software GEO5 and PLAXIS.展开更多
The inverter-fed motor is a key component of environmental-friendly hybrid cars, high-speed trains, and other industrial applications. After the widespread use of inverter-fed motors, the repetitive impulse surges fro...The inverter-fed motor is a key component of environmental-friendly hybrid cars, high-speed trains, and other industrial applications. After the widespread use of inverter-fed motors, the repetitive impulse surges from inverters were found to cause new insulation problems in inverter-fed motors that were linked to premature insulation failure. The partial discharge (PD) induced by the overvoltage inner stator windings was found to be the root cause of insulation reliability problems. To mitigate this problem, PD detection and life testing at repetitive square voltages should be performed on new types of insulation models and entire motor insulation systems. The obtained partial discharge inception voltage (PDIV) and lifetime of insulation in the tests can be used to evaluate the insulation status of inverter-fed motor insulation systems and thus to improve the insulation designs. At AC voltage conditions, the voltage frequency can significantly affect PD activity. At repetitive square voltage with rapid rise time, the influence of the square voltage frequency on PD activity should be investigated (1) to suggest values for the repetitive square voltage frequency selection for the PDIV and lifetime tests, and (2) to increase the signal-to-noise ratio when extracting PD pulses from strong disturbances generated by the operating switch of impulse generators. Therefore, the main purpose of this paper was to investigate the effects of repetitive square voltage frequency on PD events. Insulation models of both Type I (low-voltage inverter-fed motor) and Type II (high-voltage inverter-fed motor) were used to obtain single-PD and multi-PD statistical features, respectively. Experimental results indicated that higher frequencies caused less PD events with lower PD magnitudes and shorter delay times in one square voltage cycle. This phenomenon was attributed to the different surface charge decay ratios and the initial electron emission probabilities resulting from different square voltage frequencies. Finally, a number of considerations for PD measurements on inverter-fed motors were provided to improve the sensitivity of the PD test system and to obtain high objective insulation lifetime test results, which are used to assess the insulation status of inverter-fed motors.展开更多
Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-...Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-gravity simulation on objects outside earth for future work, the law of dynamic similarity for detectors was deduced. A new method was proposed for simulating the low-gravity field on the surface of objects outside earth, which was achieved by changing initial conditions of the landing by the probe and by subsequent treatment of experimental data. The prototype tested the limitation of this method was verified. It is shown that the prototypes of detectors can be used in detectors low-gravity simulation test with this method, and equipments are simple and operationally effective. This method can be used for later lunar exploration, and low-gravity simulations on extraterrestrial objects.展开更多
基金Key project in the Natural Science Foundation of China (40136010) Natural Science Foundation of China (40075003)
文摘In this article, a sensitivity test of air-sea surface flux model was carried out with the field observation data of Project “South China Sea Air-Sea Flux Measurement in 2000”. The results show that sensible heat fluxes are sensitive to observation errors, increasing the error of model calculation; In contrast, the latent heat flux and momentum flux are not as sensitive to observation errors as the sensible heat, and their calculated results are reliable. The test result also verifies the rationality of the surface flux values calculated and the conclusions can be used to detect errors in observed data.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
文摘In several parts of the world, disposal of waste materials such as fly ash is a great problem. Application of waste materials as structural fills in foundations is one of the best solutions to disposal problems, because wastes can be used in large volumes in such applications. There may be difficulty due to poor load-bearing capacity of fly ash, especially when footing rests on the top of the fly ash fill slope. Inclusion of polymeric reinforcements as horizontal sheets within the fill may be one of the most viable solutions to improving the load-bearing capacity of reinforced fly ash slope, and it is particularly important for the situations where foundations need to be located either on the top of a slope or on slope itself. The present work is aimed at investigating the efficacy of a single layer of reinforcement in improving the lo, ad-bearing capacity when it gets incorporated within the body of a model fly ash embankment slope. An increase in load bearing capacity due to the incorporation of reinforcement in the model slope was found by conducting laboratory tests. Experimental results were compared by numerical values obtained using software GEO5 and PLAXIS.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51177136, 50377035)the Zhuzhou Electric Motor Company of the South China Locomotive & Rolling Stock Corporation,Limited
文摘The inverter-fed motor is a key component of environmental-friendly hybrid cars, high-speed trains, and other industrial applications. After the widespread use of inverter-fed motors, the repetitive impulse surges from inverters were found to cause new insulation problems in inverter-fed motors that were linked to premature insulation failure. The partial discharge (PD) induced by the overvoltage inner stator windings was found to be the root cause of insulation reliability problems. To mitigate this problem, PD detection and life testing at repetitive square voltages should be performed on new types of insulation models and entire motor insulation systems. The obtained partial discharge inception voltage (PDIV) and lifetime of insulation in the tests can be used to evaluate the insulation status of inverter-fed motor insulation systems and thus to improve the insulation designs. At AC voltage conditions, the voltage frequency can significantly affect PD activity. At repetitive square voltage with rapid rise time, the influence of the square voltage frequency on PD activity should be investigated (1) to suggest values for the repetitive square voltage frequency selection for the PDIV and lifetime tests, and (2) to increase the signal-to-noise ratio when extracting PD pulses from strong disturbances generated by the operating switch of impulse generators. Therefore, the main purpose of this paper was to investigate the effects of repetitive square voltage frequency on PD events. Insulation models of both Type I (low-voltage inverter-fed motor) and Type II (high-voltage inverter-fed motor) were used to obtain single-PD and multi-PD statistical features, respectively. Experimental results indicated that higher frequencies caused less PD events with lower PD magnitudes and shorter delay times in one square voltage cycle. This phenomenon was attributed to the different surface charge decay ratios and the initial electron emission probabilities resulting from different square voltage frequencies. Finally, a number of considerations for PD measurements on inverter-fed motors were provided to improve the sensitivity of the PD test system and to obtain high objective insulation lifetime test results, which are used to assess the insulation status of inverter-fed motors.
基金supported by the National Natural Science Foundation of China(Grant No.51105196)Natural Science Foundation of Jiangsu Province(Grant No.BK2011733)
文摘Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-gravity simulation on objects outside earth for future work, the law of dynamic similarity for detectors was deduced. A new method was proposed for simulating the low-gravity field on the surface of objects outside earth, which was achieved by changing initial conditions of the landing by the probe and by subsequent treatment of experimental data. The prototype tested the limitation of this method was verified. It is shown that the prototypes of detectors can be used in detectors low-gravity simulation test with this method, and equipments are simple and operationally effective. This method can be used for later lunar exploration, and low-gravity simulations on extraterrestrial objects.