A new algorithm using orthogonal polynomials and sample moments was presented for estimating probability curves directly from experimental or field data of rock variables. The moments estimated directly from a sample ...A new algorithm using orthogonal polynomials and sample moments was presented for estimating probability curves directly from experimental or field data of rock variables. The moments estimated directly from a sample of observed values of a random variable could be conventional moments (moments about the origin or central moments) and probability-weighted moments (PWMs). Probability curves derived from orthogonal polynomials and conventional moments are probability density functions (PDF), and probability curves derived from orthogonal polynomials and PWMs are inverse cumulative density functions (CDF) of random variables. The proposed approach is verified by two most commonly-used theoretical standard distributions: normal and exponential distribution. Examples from observed data of uniaxial compressive strength of a rock and concrete strength data are presented for illustrative purposes. The results show that probability curves of rock variable can be accurately derived from orthogonal polynomials and sample moments. Orthogonal polynomials and PWMs enable more secure inferences to be made from relatively small samples about an underlying probability curve.展开更多
The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan statio...The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan station,Beijing where there are two different gravimeters( namely,L&R-804 and PET-031). Based on the original raw tidal records of two gravimeters from 2008 to 2011,we first remove various interference from raw data by the standard procedure software-Tsoft; then we model the solid earth tides, ocean tidal loading and pole tide through related parameters; after that we adopt a new segmented polynomial fitting method based on Tsoft to fit the complex drift of spring gravimeter; and finally we calculate the atmospheric loading effects by a linear regression model. After a series of processing we gain the non-tidal variation of the two gravimeters at Baijiatuan site,Beijing. Furthermore,to analyze the non-tidal variation preliminarily,we study the main component of related tidal data by power spectral density. Comparing the non-tidal variation of two different gravimeters,we find seasonal fluctuations in non-tidal results, which are in accordance with the water storage change. Therefore,we take into account the relevance of gravity changes and water storage based on the gravity data of GRACE and water data of the CMAP model from 2003 to 2011 at different sites in the Chinese mainland( Beijing, Chengdu, Shenyang and Shiquanhe), and make a preliminary analysis on the relationship between gravity changes and water storage.展开更多
Network measures are useful for predicting fault-prone modules. However, existing work has not distinguished faults according to their severity. In practice, high severity faults cause serious problems and require fur...Network measures are useful for predicting fault-prone modules. However, existing work has not distinguished faults according to their severity. In practice, high severity faults cause serious problems and require further attention. In this study, we explored the utility of network measures in high severity faultproneness prediction. We constructed software source code networks for four open-source projects by extracting the dependencies between modules. We then used univariate logistic regression to investigate the associations between each network measure and fault-proneness at a high severity level. We built multivariate prediction models to examine their explanatory ability for fault-proneness, as well as evaluated their predictive effectiveness compared to code metrics under forward-release and cross-project predictions. The results revealed the following:(1) most network measures are significantly related to high severity fault-proneness;(2) network measures generally have comparable explanatory abilities and predictive powers to those of code metrics; and(3) network measures are very unstable for cross-project predictions. These results indicate that network measures are of practical value in high severity fault-proneness prediction.展开更多
We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on ...We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo-and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.展开更多
The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eig...The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.展开更多
文摘A new algorithm using orthogonal polynomials and sample moments was presented for estimating probability curves directly from experimental or field data of rock variables. The moments estimated directly from a sample of observed values of a random variable could be conventional moments (moments about the origin or central moments) and probability-weighted moments (PWMs). Probability curves derived from orthogonal polynomials and conventional moments are probability density functions (PDF), and probability curves derived from orthogonal polynomials and PWMs are inverse cumulative density functions (CDF) of random variables. The proposed approach is verified by two most commonly-used theoretical standard distributions: normal and exponential distribution. Examples from observed data of uniaxial compressive strength of a rock and concrete strength data are presented for illustrative purposes. The results show that probability curves of rock variable can be accurately derived from orthogonal polynomials and sample moments. Orthogonal polynomials and PWMs enable more secure inferences to be made from relatively small samples about an underlying probability curve.
基金sponsored by the Basic Scientific Research of Institute of Geophysics,CEA(DQJB12B20,DQJB12C03,DQJB12B14)
文摘The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan station,Beijing where there are two different gravimeters( namely,L&R-804 and PET-031). Based on the original raw tidal records of two gravimeters from 2008 to 2011,we first remove various interference from raw data by the standard procedure software-Tsoft; then we model the solid earth tides, ocean tidal loading and pole tide through related parameters; after that we adopt a new segmented polynomial fitting method based on Tsoft to fit the complex drift of spring gravimeter; and finally we calculate the atmospheric loading effects by a linear regression model. After a series of processing we gain the non-tidal variation of the two gravimeters at Baijiatuan site,Beijing. Furthermore,to analyze the non-tidal variation preliminarily,we study the main component of related tidal data by power spectral density. Comparing the non-tidal variation of two different gravimeters,we find seasonal fluctuations in non-tidal results, which are in accordance with the water storage change. Therefore,we take into account the relevance of gravity changes and water storage based on the gravity data of GRACE and water data of the CMAP model from 2003 to 2011 at different sites in the Chinese mainland( Beijing, Chengdu, Shenyang and Shiquanhe), and make a preliminary analysis on the relationship between gravity changes and water storage.
基金supported by National Natural Science Foundation of China (Grant Nos. 61472175, 61472178, 61272082, 61272080, 91418202)Natural Science Foundation of Jiangsu Province (Grant No. BK20130014)Natural Science Foundation of Colleges in Jiangsu Province (Grant No. 13KJB520018)
文摘Network measures are useful for predicting fault-prone modules. However, existing work has not distinguished faults according to their severity. In practice, high severity faults cause serious problems and require further attention. In this study, we explored the utility of network measures in high severity faultproneness prediction. We constructed software source code networks for four open-source projects by extracting the dependencies between modules. We then used univariate logistic regression to investigate the associations between each network measure and fault-proneness at a high severity level. We built multivariate prediction models to examine their explanatory ability for fault-proneness, as well as evaluated their predictive effectiveness compared to code metrics under forward-release and cross-project predictions. The results revealed the following:(1) most network measures are significantly related to high severity fault-proneness;(2) network measures generally have comparable explanatory abilities and predictive powers to those of code metrics; and(3) network measures are very unstable for cross-project predictions. These results indicate that network measures are of practical value in high severity fault-proneness prediction.
基金the National Natural Science Foundation of China (21290190)
文摘We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo-and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.
文摘The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.