期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
地壳深部“重力-构造力复合压力状态”研究和大别——苏鲁超高压变质形成深度的测算 被引量:5
1
作者 吕古贤 胡宝群 +4 位作者 罗毅甜 刘瑞珣 王方正 李勃辉 王宗永 《地学前缘》 EI CAS CSCD 北大核心 2017年第2期1-15,共15页
讨论了地壳深部岩石处于"重力-构造力复合的静水压力模型"。此模型的基本认识为,地壳深部压力是由重力应力和构造应力引起的两部分各向等应力合成的,构造应力场的静水压力部分被称为"构造附加静水压力"。遵循这一认... 讨论了地壳深部岩石处于"重力-构造力复合的静水压力模型"。此模型的基本认识为,地壳深部压力是由重力应力和构造应力引起的两部分各向等应力合成的,构造应力场的静水压力部分被称为"构造附加静水压力"。遵循这一认识,需要从总静水压力中先去掉构造附加静水压力,进而用构造校正[深度=重力引起压力/(总压力-构造附加的压力)]的方法,进行形成深度的测算。考虑岩石作为黏弹性体的应力-应变关系,作者用黏弹性本构方程,获得大别地区英山县含柯石英榴辉岩的成岩深度≥30km,安徽岳西碧溪岭地区含柯石英榴辉岩深度为23~53km,河南新县地区的含柯石英榴辉岩成岩深度为36~40km。再进一步用变质深度的流变学公式,在黏性系数0.2×10^(23)条件下,推算出超高压变质岩形成深度约50~55km。可见,大别超高压变质岩形成深度介于23~55km,而不是前人认为的超过100km甚至更深,由此,"深俯冲-折返"模式需要科学的论证。本研究为高压-超高压变质的"构造增压壳内成因"提供了一些依据。 展开更多
关键词 大别超高压变质带 重力-构造力复合的静水压力模型 柯石英榴辉岩 构造附加静压力 深度构造校正测算 构造增压壳内成因
下载PDF
地下岩石构造力复合重力的压力状态分析 被引量:2
2
作者 刘瑞珣 吕古贤 +1 位作者 任剑成 王宗永 《地学前缘》 EI CAS CSCD 北大核心 2017年第2期16-22,共7页
针对大别一带超高压变质作用的形成深度存在两种观点:其一是形成深度可用静流体公式h=p/(ρg)算出,并得出变质作用形成于90km或更深处;其二是超高压是重力、构造力和其他力合成的,并不只是重力的作用,从而该变质作用可以在地壳内形成。... 针对大别一带超高压变质作用的形成深度存在两种观点:其一是形成深度可用静流体公式h=p/(ρg)算出,并得出变质作用形成于90km或更深处;其二是超高压是重力、构造力和其他力合成的,并不只是重力的作用,从而该变质作用可以在地壳内形成。地下的岩石处于固态,而静止流体公式不适用于固体。事实上,围压不仅来自重力,而且也来自构造力和其他力,所以合理的求深度算法应该是从总压力中减去构造力获得纯重力才可用来计算深度。还简要解释了诸如剪应力、差应力、构造力等概念。 展开更多
关键词 静水压力模型 地质作用深度 超高压变质作用 重力 构造 剪应 差应
下载PDF
船舶撞击荷载下桩基-重力式复合结构连接节点响应分析 被引量:1
3
作者 李欢 《水运工程》 北大核心 2020年第6期158-165,共8页
桩基-重力式复合结构的连接节点处受力集中、应力大,且两种材料之间的连接,是该结构最关键和薄弱的部位。利用ABAQUS软件建立桩基-重力式靠船墩模型,分析连接节点在船舶撞击荷载下的响应,并研究不同因素的影响。结果表明,在船舶靠泊撞... 桩基-重力式复合结构的连接节点处受力集中、应力大,且两种材料之间的连接,是该结构最关键和薄弱的部位。利用ABAQUS软件建立桩基-重力式靠船墩模型,分析连接节点在船舶撞击荷载下的响应,并研究不同因素的影响。结果表明,在船舶靠泊撞击荷载下,桩基-重力式复合结构前排连接节点的位移和受拉损伤系数峰值略大于后两排,最大主应力峰值出现在前排桩与沉箱连接节点前侧。桩的埋入深度应不小于1倍桩径,当埋入深度超过1倍桩径后,增大埋入深度对改善连接节点受力特性效果不明显;增大桩径尺寸是改善连接节点的受力特性最有效的措施,提高沉箱高度是改善连接节点的受力特性较为经济合理的措施。同时,可设置构造措施提高连接节点的承载力。 展开更多
关键词 桩基-重力复合结构 ABAQUS 连接节点 特性 构造措施
下载PDF
大别——苏鲁高压-超高压变质带的“构造增压壳内成因”研究 被引量:1
4
作者 吕古贤 胡宝群 +3 位作者 罗毅甜 刘瑞珣 王方正 刘智方 《地学前缘》 EI CAS CSCD 北大核心 2017年第2期40-53,共14页
研究发现,高压-超高压变质岩基本都发育于全球或区域规模的大型构造带,产于强烈构造变形带中相对较弱应变的部位。苏鲁—大别超高压变质岩具有明显的构造变形,这成为追索构造应力-应变作用和探讨形成构造环境与演化过程的重要线索。本... 研究发现,高压-超高压变质岩基本都发育于全球或区域规模的大型构造带,产于强烈构造变形带中相对较弱应变的部位。苏鲁—大别超高压变质岩具有明显的构造变形,这成为追索构造应力-应变作用和探讨形成构造环境与演化过程的重要线索。本研究用成岩成矿深度的"构造校正测算方法",进行野外观察、岩石变形-应力测算及构造校正测算。其结果显示,超高压变质岩形成深度在23~55km之间。大别—苏鲁超高压变质岩的锆石SHRIMP年龄显示,具有环带的内核高压矿物年龄大于680 Ma,而其含柯石英幔圈里超高压变质矿物在(231±4)Ma形成,角闪岩相等退变质矿物形成在(211±4)Ma,可见超高压变质发生在陆缘和陆内的地质环境。综合研究其岩石矿物的Sr-Nd、O和He同位素含量,有力证明了岩石的壳内成因特征。深钻孔岩心的岩石矿物学系统显示,超高压变质岩及其几公里宽范围里的各类围岩普遍含有柯石英等高压-超高压矿物包体。上述实际资料,用超高压变质的"深俯冲-折返"模式已经不能得到科学的解释。本文提出大别—苏鲁超高压变质岩"构造增压壳内成因模式",认为这些超高压变质作用可能发育在陆内地块之间的强烈构造挤压环境。在230Ma左右,由于构造压力与重力压力叠加致使局部达到超高压及相应温度等条件,特别是当p≥2.8GPa时,变质的物理化学条件得到满足,可以在23~55km深处发生超高压变质作用,之后经应力松弛和拆离构造,岩石又逐步抬升并发生退变质作用。也可以说,该超高压变质岩具有构造物理化学成因。 展开更多
关键词 大别超高压变质带 重力-构造复合压力 构造附加静水压力 深度构造校正测算 壳源同位素 构造增压壳内成因
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部