针对轴承故障诊断中传统脉冲量化指标性能受限,无法正确指示在强背景噪声掩盖下的轴承故障频带的难题,提出了重加权平方包络负熵(reweighted negentropy of the squared envelope,RNSE)和重加权平方包络谱负熵(reweighted negentropy of...针对轴承故障诊断中传统脉冲量化指标性能受限,无法正确指示在强背景噪声掩盖下的轴承故障频带的难题,提出了重加权平方包络负熵(reweighted negentropy of the squared envelope,RNSE)和重加权平方包络谱负熵(reweighted negentropy of the squared envelope spectrum,RNSES),它们不仅能够在无周期先验知识情况下保持对故障周期性脉冲敏感性,而且对于随机脉冲也有较强的鲁棒性。进一步地,为提取轴承振动信号中的故障特征,基于RNSE和RNSES的加权平均值提出了重加权信息图(reweighted infogram,Rinfogram)算法。利用轴承故障仿真信号和高速列车牵引电机轴承台架试验信号证明Rinfogram算法能够在强噪声干扰下成功识别故障频带,对于随机脉冲干扰具有很好的鲁棒性,其故障特征提取效果优于基于谱峭度的Kurtogram和传统Infogram,从而提高了轴承故障诊断的准确性。展开更多
反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴...反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴域适应思想,采用对抗学习机制对由变分自编码器(VAE)获得的隐含变量进行表示学习的分布平衡;在此基础上,通过学习样本倾向性权重对样本进行重加权,进一步缩小实验组(Treatment)与对照组(Control)样本间的分布差异。实验结果表明,在工业真实场景数据集的两个场景下,所提模型的提升曲线下的面积(AUUC)比TEDVAE(Treatment Effect with Disentangled VAE)分别提升了15.02%、16.02%;在公开数据集上,所提模型的平均干预效果(ATE)和异构估计精度(PEHE)普遍取得最优结果。展开更多
在训练集存在噪声标签或类别不平衡分布的情况下,深度神经网络具有过度拟合这种有偏差的训练数据的不良趋势。通过设计适当的样本权重,使用重加权策略是解决此问题的常用方法,但不适当的重加权方案会给网络学习引入额外的开销和偏差,仅...在训练集存在噪声标签或类别不平衡分布的情况下,深度神经网络具有过度拟合这种有偏差的训练数据的不良趋势。通过设计适当的样本权重,使用重加权策略是解决此问题的常用方法,但不适当的重加权方案会给网络学习引入额外的开销和偏差,仅使用重加权方法很难解决有偏差分布下网络的过拟合问题。为此,建议将标签平滑正则化和类裕度正则化与重加权结合使用,并提出了一种基于自适应重加权和正则化的元学习方法(ensemble meta net,EMN),模型框架包括用于分类的基本网络和用于超参数估计的集成元网。该方法首先通过基本网络获得样本损失;然后使用三个元学习器基于损失值以集成的方式估计自适应重加权和正则化的超参数;最终利用三个超参数计算最终的集成元损失更新基本网络,进而提高基本网络在有偏分布数据集上的性能。实验结果表明,EMN在CIFAR和OCTMNIST数据集上的准确率高于其他方法,并通过策略关联性分析证明了不同策略的有效性。展开更多
文摘针对轴承故障诊断中传统脉冲量化指标性能受限,无法正确指示在强背景噪声掩盖下的轴承故障频带的难题,提出了重加权平方包络负熵(reweighted negentropy of the squared envelope,RNSE)和重加权平方包络谱负熵(reweighted negentropy of the squared envelope spectrum,RNSES),它们不仅能够在无周期先验知识情况下保持对故障周期性脉冲敏感性,而且对于随机脉冲也有较强的鲁棒性。进一步地,为提取轴承振动信号中的故障特征,基于RNSE和RNSES的加权平均值提出了重加权信息图(reweighted infogram,Rinfogram)算法。利用轴承故障仿真信号和高速列车牵引电机轴承台架试验信号证明Rinfogram算法能够在强噪声干扰下成功识别故障频带,对于随机脉冲干扰具有很好的鲁棒性,其故障特征提取效果优于基于谱峭度的Kurtogram和传统Infogram,从而提高了轴承故障诊断的准确性。
文摘反事实预测和选择偏差是因果效应估计中的重大挑战。为对潜在协变量的复杂混杂分布进行有效表征,同时增强反事实预测泛化能力,提出一种面向工业因果效应估计应用的重加权对抗变分自编码器网络(RVAENet)模型。针对混杂分布去偏问题,借鉴域适应思想,采用对抗学习机制对由变分自编码器(VAE)获得的隐含变量进行表示学习的分布平衡;在此基础上,通过学习样本倾向性权重对样本进行重加权,进一步缩小实验组(Treatment)与对照组(Control)样本间的分布差异。实验结果表明,在工业真实场景数据集的两个场景下,所提模型的提升曲线下的面积(AUUC)比TEDVAE(Treatment Effect with Disentangled VAE)分别提升了15.02%、16.02%;在公开数据集上,所提模型的平均干预效果(ATE)和异构估计精度(PEHE)普遍取得最优结果。
文摘在训练集存在噪声标签或类别不平衡分布的情况下,深度神经网络具有过度拟合这种有偏差的训练数据的不良趋势。通过设计适当的样本权重,使用重加权策略是解决此问题的常用方法,但不适当的重加权方案会给网络学习引入额外的开销和偏差,仅使用重加权方法很难解决有偏差分布下网络的过拟合问题。为此,建议将标签平滑正则化和类裕度正则化与重加权结合使用,并提出了一种基于自适应重加权和正则化的元学习方法(ensemble meta net,EMN),模型框架包括用于分类的基本网络和用于超参数估计的集成元网。该方法首先通过基本网络获得样本损失;然后使用三个元学习器基于损失值以集成的方式估计自适应重加权和正则化的超参数;最终利用三个超参数计算最终的集成元损失更新基本网络,进而提高基本网络在有偏分布数据集上的性能。实验结果表明,EMN在CIFAR和OCTMNIST数据集上的准确率高于其他方法,并通过策略关联性分析证明了不同策略的有效性。