期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图像分块及重构的菠菜重叠叶片与杂草识别
被引量:
19
1
作者
苗荣慧
杨华
+1 位作者
武锦龙
刘昊宇
《农业工程学报》
EI
CAS
CSCD
北大核心
2020年第4期178-184,共7页
针对重叠叶片在识别过程中存在识别率低、形状特征失效等问题,该研究提出一种基于图像分块及重构的方法,实现菠菜重叠叶片杂草识别。采用超绿模型将菠菜RGB图像进行灰度化得到绿色植被前景图像。针对重叠叶片形状特征失效问题,采用图像...
针对重叠叶片在识别过程中存在识别率低、形状特征失效等问题,该研究提出一种基于图像分块及重构的方法,实现菠菜重叠叶片杂草识别。采用超绿模型将菠菜RGB图像进行灰度化得到绿色植被前景图像。针对重叠叶片形状特征失效问题,采用图像分块方式得到不同大小的图像块,并提取图像块中作物和杂草的颜色特征、局部二值模式(local binary pattern,LBP)纹理特征、分形盒维数共78维特征,构造支持向量机(support vector machine,SVM)分类器完成图像块的分类识别。该研究提出图像块边缘扩充和投票窗口机制得到重构图实现图像块分类结果可视化。试验结果表明,该研究提出的方法平均识别率达到83.78%,高于K最近邻法(K-Nearest neighbor,KNN)、决策树法等,可以实现重叠叶片的杂草识别,从而为智能除草机的研制提供理论依据。
展开更多
关键词
图像分块
图像重构
重叠叶片杂草识别
颜色特征
LBP纹理特征
分形盒维数
下载PDF
职称材料
题名
基于图像分块及重构的菠菜重叠叶片与杂草识别
被引量:
19
1
作者
苗荣慧
杨华
武锦龙
刘昊宇
机构
山西农业大学信息科学与工程学院
山西农业大学农学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2020年第4期178-184,共7页
基金
国家自然科学基金(31671571)
山西农业大学青年科技创新基金(2017013)。
文摘
针对重叠叶片在识别过程中存在识别率低、形状特征失效等问题,该研究提出一种基于图像分块及重构的方法,实现菠菜重叠叶片杂草识别。采用超绿模型将菠菜RGB图像进行灰度化得到绿色植被前景图像。针对重叠叶片形状特征失效问题,采用图像分块方式得到不同大小的图像块,并提取图像块中作物和杂草的颜色特征、局部二值模式(local binary pattern,LBP)纹理特征、分形盒维数共78维特征,构造支持向量机(support vector machine,SVM)分类器完成图像块的分类识别。该研究提出图像块边缘扩充和投票窗口机制得到重构图实现图像块分类结果可视化。试验结果表明,该研究提出的方法平均识别率达到83.78%,高于K最近邻法(K-Nearest neighbor,KNN)、决策树法等,可以实现重叠叶片的杂草识别,从而为智能除草机的研制提供理论依据。
关键词
图像分块
图像重构
重叠叶片杂草识别
颜色特征
LBP纹理特征
分形盒维数
Keywords
image blocks
image reconstruction
weeds identification for overlapping leaves
color features
LBP texture features
fractal box dimension
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于图像分块及重构的菠菜重叠叶片与杂草识别
苗荣慧
杨华
武锦龙
刘昊宇
《农业工程学报》
EI
CAS
CSCD
北大核心
2020
19
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部