高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉...高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉图像的局部相关性和方向性结构,同时减少传统全变分正则化中的阶梯伪影。通过乘子交替方向法求解非凸优化问题,显著提高了去噪效率。在多个遥感图像数据集上的仿真实验表明,所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)等评价指标上优于现有技术,展现了在复杂噪声环境下的优越去噪性能和广泛的应用潜力。The removal of mixed noise from hyperspectral images is a fundamental issue in the field of remote sensing and an important preprocessing step. This study focuses on the denoising problem of hyperspectral images. To effectively restore hyperspectral images, a new denoising method based on Overlap Group Sparse Hyper Laplacian Regularization (OGS-HL) is proposed. This method can effectively capture the local correlation and directional structure of images, while reducing the step artifacts in traditional total variation regularization. By using the alternating direction method of multipliers to solve non-convex optimization problems, the denoising efficiency has been significantly improved. Simulation experiments on multiple remote sensing image datasets have shown that the proposed method outperforms existing technologies in evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), demonstrating superior denoising performance and broad application potential in complex noisy environments.展开更多
为了更好地保留核环境下图像降噪后的细节信息,提出了基于混合二阶全变分的抗核辐射图像降噪方法。将非凸二阶全变分与重叠组稀疏正则化相结合,使用交替方向乘子法(alternating direction method of multiplier,ADMM)和增广拉格朗日乘...为了更好地保留核环境下图像降噪后的细节信息,提出了基于混合二阶全变分的抗核辐射图像降噪方法。将非凸二阶全变分与重叠组稀疏正则化相结合,使用交替方向乘子法(alternating direction method of multiplier,ADMM)和增广拉格朗日乘子法对全局问题进行优化求解,多次迭代后得到基本降噪图像;将多次降噪后的基本降噪图像进行差值迭代,使核辐射图像中大范围跳变的灰度值更加接近原始图像灰度值;根据核噪声的特点,设计算法模拟出核噪声斑块。通过在真实核环境下采集的数据集和模拟的核噪声数据集上进行实验,峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)等指标的变化及处理后的视觉效果表明,提出的算法在保留图像细节信息方面优于对比算法。展开更多
文摘高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉图像的局部相关性和方向性结构,同时减少传统全变分正则化中的阶梯伪影。通过乘子交替方向法求解非凸优化问题,显著提高了去噪效率。在多个遥感图像数据集上的仿真实验表明,所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)等评价指标上优于现有技术,展现了在复杂噪声环境下的优越去噪性能和广泛的应用潜力。The removal of mixed noise from hyperspectral images is a fundamental issue in the field of remote sensing and an important preprocessing step. This study focuses on the denoising problem of hyperspectral images. To effectively restore hyperspectral images, a new denoising method based on Overlap Group Sparse Hyper Laplacian Regularization (OGS-HL) is proposed. This method can effectively capture the local correlation and directional structure of images, while reducing the step artifacts in traditional total variation regularization. By using the alternating direction method of multipliers to solve non-convex optimization problems, the denoising efficiency has been significantly improved. Simulation experiments on multiple remote sensing image datasets have shown that the proposed method outperforms existing technologies in evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), demonstrating superior denoising performance and broad application potential in complex noisy environments.
文摘为了更好地保留核环境下图像降噪后的细节信息,提出了基于混合二阶全变分的抗核辐射图像降噪方法。将非凸二阶全变分与重叠组稀疏正则化相结合,使用交替方向乘子法(alternating direction method of multiplier,ADMM)和增广拉格朗日乘子法对全局问题进行优化求解,多次迭代后得到基本降噪图像;将多次降噪后的基本降噪图像进行差值迭代,使核辐射图像中大范围跳变的灰度值更加接近原始图像灰度值;根据核噪声的特点,设计算法模拟出核噪声斑块。通过在真实核环境下采集的数据集和模拟的核噪声数据集上进行实验,峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)等指标的变化及处理后的视觉效果表明,提出的算法在保留图像细节信息方面优于对比算法。