Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating ...Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating the impact of these factors on crashes and/or rollover through simulations. This is mainly due to lack of availability of verified full vehicle flexible-body models. The verification process is costly as it requires instrumentation of a heavy vehicle, scanning of road surfaces, and collection of data by running the vehicle over different road conditions, performing various maneuvering, etc. This paper presents the reverse engineering process of a class-8 truck and validation of a full flexible-body simulation model of a Wabash 53-foot trailer against the strain data recoded from proving ground testing of an instrumented truck. Simulation results show that, with the exception of the noise from the strain gage data from instrumented test run at 30 mph, there is a good agreement in periodicity and relative amplitude with the ADAMS model. A comparison of strain data from the flex-body model and the instrumented truck shows that the modeling and verification approach presented in this paper can be confidently used to validate the full flexible-body models developed for specific analyses.展开更多
Based on dynamometer test cycles or plain motorway operation, heavy truck hybridisation must be considered as uneconomic if only the kinetic vehicle energy can be recuperated. In mountainous regions, micro hybridizati...Based on dynamometer test cycles or plain motorway operation, heavy truck hybridisation must be considered as uneconomic if only the kinetic vehicle energy can be recuperated. In mountainous regions, micro hybridization by a 48V-belt generator or mild parallel hybridisation by a large high voltage electric drive can result in considerable fuel consumption savings as well as additional benefits for heavy load utility vehicles. Additional electric power and battery size are still critical design parameters as well as critical cost factors considering the limited space and depreciation time as well as the need for maximum payload. Based on vehicle model simulations, this contribution quantifies fuel consumption savings, recuperation energy harvesting and battery requirements for different truck sizes with test cycles based on realistic route topography. The main route topography parameter for the recuperation benefit is the effective incline that integrates all downhill sections that overcompensates the vehicle resistance by tire friction and air resistance. The simulation parameter studies lead to an analytical benefit estimation, based on load cycle parameters like effective velocity, effective incline as well as the vehicle parameters mass, drag coefficient and cross sectional area. Thus, the return on investment can be assessed by an analytic rule of thumb, based on tracked cycles of existing vehicles.展开更多
文摘Many studies have been conducted by analyzing crash data that included road profile, site conditions, vehicle configurations and weights, driver behavior, etc.. However, limited studies have been conducted evaluating the impact of these factors on crashes and/or rollover through simulations. This is mainly due to lack of availability of verified full vehicle flexible-body models. The verification process is costly as it requires instrumentation of a heavy vehicle, scanning of road surfaces, and collection of data by running the vehicle over different road conditions, performing various maneuvering, etc. This paper presents the reverse engineering process of a class-8 truck and validation of a full flexible-body simulation model of a Wabash 53-foot trailer against the strain data recoded from proving ground testing of an instrumented truck. Simulation results show that, with the exception of the noise from the strain gage data from instrumented test run at 30 mph, there is a good agreement in periodicity and relative amplitude with the ADAMS model. A comparison of strain data from the flex-body model and the instrumented truck shows that the modeling and verification approach presented in this paper can be confidently used to validate the full flexible-body models developed for specific analyses.
文摘Based on dynamometer test cycles or plain motorway operation, heavy truck hybridisation must be considered as uneconomic if only the kinetic vehicle energy can be recuperated. In mountainous regions, micro hybridization by a 48V-belt generator or mild parallel hybridisation by a large high voltage electric drive can result in considerable fuel consumption savings as well as additional benefits for heavy load utility vehicles. Additional electric power and battery size are still critical design parameters as well as critical cost factors considering the limited space and depreciation time as well as the need for maximum payload. Based on vehicle model simulations, this contribution quantifies fuel consumption savings, recuperation energy harvesting and battery requirements for different truck sizes with test cycles based on realistic route topography. The main route topography parameter for the recuperation benefit is the effective incline that integrates all downhill sections that overcompensates the vehicle resistance by tire friction and air resistance. The simulation parameter studies lead to an analytical benefit estimation, based on load cycle parameters like effective velocity, effective incline as well as the vehicle parameters mass, drag coefficient and cross sectional area. Thus, the return on investment can be assessed by an analytic rule of thumb, based on tracked cycles of existing vehicles.