期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
语言的艺术魅力——赫塔·米勒《呼吸秋千》中语言“重复”现象研究 被引量:1
1
作者 于月 《江苏理工学院学报》 2017年第1期15-19,共5页
赫塔·米勒是德国最具影响力的作家之一,2009年获诺贝尔文学奖。其获奖作品《呼吸秋千》中的"重复"修辞手法极具文学性,词语重复和句子重复修辞手法的运用,淋漓尽致地再现了小说主人公雷奥在劳动营的悲惨经历,也揭示了重... 赫塔·米勒是德国最具影响力的作家之一,2009年获诺贝尔文学奖。其获奖作品《呼吸秋千》中的"重复"修辞手法极具文学性,词语重复和句子重复修辞手法的运用,淋漓尽致地再现了小说主人公雷奥在劳动营的悲惨经历,也揭示了重复背后隐藏的不可言说的真正内涵。 展开更多
关键词 赫塔·米勒 《呼吸秋千》 重复观 词语重复 句子重复
下载PDF
煤矿采区三维地震数据采集的变观方法研究 被引量:1
2
作者 咸海龙 邹起阳 +1 位作者 吴陈耿 罗小虎 《煤炭与化工》 CAS 2015年第3期54-56,共3页
由于地形地物的限制,三维地震数据采集中不可避免地要遇到三维观测系统的变观问题。针对这一问题,对常规变观方法进行了探讨,阐述了纵向恢复性放炮与重复性放炮的优劣,提出了采用延长排列长度、重复性放炮和近似恢复性放炮相结合的方法... 由于地形地物的限制,三维地震数据采集中不可避免地要遇到三维观测系统的变观问题。针对这一问题,对常规变观方法进行了探讨,阐述了纵向恢复性放炮与重复性放炮的优劣,提出了采用延长排列长度、重复性放炮和近似恢复性放炮相结合的方法,使得覆盖次数符合要求,又能得到近炮检距资料。通过这几种实用的变观方法的结合使用,保证了煤矿采区三维地震勘探野外数据采集的质量和效率,对实际采集工作具有一定的指导意义。 展开更多
关键词 三维地震勘探 观测系统 恢复性变观 重复性变观 覆盖次数
下载PDF
哲学中的波西米亚人——德勒兹的“重复”概念刍议 被引量:4
3
作者 李河 《哲学动态》 CSSCI 北大核心 2015年第6期45-54,共10页
本文旨在解读"德勒兹现象",并对其"差异/重复"理论进行探讨。笔者认为德勒兹代表着哲学领域中的"波西米亚人",他们站在现在与未来、知识与无知的分界线上,以进入哲学史的方式逃离哲学史,以概念来解构概念... 本文旨在解读"德勒兹现象",并对其"差异/重复"理论进行探讨。笔者认为德勒兹代表着哲学领域中的"波西米亚人",他们站在现在与未来、知识与无知的分界线上,以进入哲学史的方式逃离哲学史,以概念来解构概念,以反对时代的方式来影响时代。凭借这种姿态,德勒兹颠覆了柏拉图式的传统重复观,创制了对差异、重复、时间、强度、力量、生成等概念的全新叙事,而这一叙事对于我们理解今天的图像时代具有重要的启示意义。 展开更多
关键词 差异/重复 柏拉图重复观/尼采重复观 现象/拟像
原文传递
ON ASYMPTOTIC NORMALITY OF PARAMETERS IN LINEAR EV MODEL 被引量:3
4
作者 ZHANG SANGUO CHEN XIRUHua Lee-Keng Institue for applied Mathematics and Information Science, Graduate School of ChineseAcademy of Sciences, Beijing 100039, China. Department of Mathematics, Graduate School of Chinese Academy of Sciences, 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第4期495-506,共12页
This paper studies the parameter estimation of one dimensional linear errors-in-variables(EV) models in the case that replicated observations are available in some experimental points.Asymptotic normality is establis... This paper studies the parameter estimation of one dimensional linear errors-in-variables(EV) models in the case that replicated observations are available in some experimental points.Asymptotic normality is established under mild conditions, and the parameters entering the asymptotic variance are consistently estimated to render the result useable in construction of large-sample confidence regions. 展开更多
关键词 Errors-in-Variables model Asymptotic normality Replicated observations
原文传递
A comparative study of the methods in estimating pharmacokinetic parameters with single-observation-per-animal type data
5
作者 Tingjie Guo1 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2016年第12期869-875,共7页
During pre-clinical pharmacokinetic research, it is not easy to gather complete pharmacokinetic data in each animal. In some cases, an animal can only provide a single observation. Under this circumstance, it is not c... During pre-clinical pharmacokinetic research, it is not easy to gather complete pharmacokinetic data in each animal. In some cases, an animal can only provide a single observation. Under this circumstance, it is not clear how to utilize this data to estimate the pharmacokinetic parameters effectively. This study was aimed at comparing a new method to handle such single-observation-per-animal type data with the conventional method in estimating pharmacokinetic parameters. We assumed there were 15 animals within the study receiving a single dose by intravenous injection. Each animal provided one observation point. There were five time points in total, and each time point contained three measurements. The data were simulated with a one-compartment model with first-order elimination. The inter-individual variabilities (ⅡV) were set to 10%, 30% and 50% for both clearance (CL) and apparent volume of distribution (V). A proportional model was used to describe the residual error, which was also set to 10%, 30% and 50%. Two methods (conventional method and the finite msampling method) to handle with the simulated single-observation-per-animal type data in estimating pharmacokinetic parameters were compared. The conventional method (MI) estimated pharmacokinetic parameters directly with original data, i.e., single-observation-per-animal type data. The finite resampling method (M2) was to expand original data to a new dataset by resampling original data with all kinds of combinations by time. After resampling, each individual in the new dataset contained complete pharmacokinetic data, i.e., in this study, there were 243 (C3^1×C3^1×C3^1×C3^1×C3^1) kinds of possible combinations and each of them was a virtual animal. The study was simulated 100 times by the NONMEM software. According to the results, parameter estimates of CL and V by M2 based on the simulated dataset were closer to their true values, though there was a small difference among different combinations of ⅡVs and the residual errors. In general, M2 was less advantageous over M1 when the residual error increased. It was also influenced by the levels of ⅡV as higher levels of IIV could lead to a decrease in the advantage of M2. However, M2 had no ability to estimate the ⅡV of parameters, nor did M1. The finite resampling method could provide more reliable results compared to the conventional method in estimating pharmacokinetic parameters with single-observation-per-animal type data. Compared to the inter-individual variability, the results of estimation were mainly influenced by the residual error. 展开更多
关键词 Single-observation-per-animal type data Finite resampling Pharmacokinetic parameters NONMEM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部