期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
医学研究中重复观测数据的统计分析方法 被引量:29
1
作者 陈长生 徐勇勇 曹秀堂 《中国卫生统计》 CSCD 北大核心 1996年第6期55-58,共4页
医学研究中重复观测数据的统计分析方法第四军医大学卫生统计教研室陈长生,徐勇勇,曹秀堂重复观测数据(repeatedmeasuresdata)是医学领域,尤其是临床医学中十分常见的一种数据形式[1,2]。所谓重复观测,... 医学研究中重复观测数据的统计分析方法第四军医大学卫生统计教研室陈长生,徐勇勇,曹秀堂重复观测数据(repeatedmeasuresdata)是医学领域,尤其是临床医学中十分常见的一种数据形式[1,2]。所谓重复观测,是指对同一实验单位(如人、动物、实... 展开更多
关键词 医学科研 重复观测数据 统计方法
下载PDF
不等距重复观测数据组间比较的正交回归模型 被引量:10
2
作者 陈长生 徐勇勇 曹秀堂 《中国卫生统计》 CSCD 北大核心 1996年第3期1-5,共5页
对于不等距重复观测数据,本文讨论了建立正交多项式回归模型进行组间比较的统计方法,并用自编软件RMDA得以实现.医学实例分析结果表明,本文提出的方法简单实用.
关键词 重复观测数据 多项式变换 回归模型 医用数学
下载PDF
医学重复观测数据组间比较的生长曲线模型 被引量:3
3
作者 陈长生 徐勇勇 +2 位作者 张音 尚磊 吴冰 《中华预防医学杂志》 CAS CSCD 北大核心 1998年第4期245-247,共3页
医学研究中常会遇到重复观测数据分析的问题。例如,在临床上,定时重复测量患者的某项生理指标,如中毒病人血液中毒物浓度的定时检测;在儿少卫生中,为了研究儿童体格发育情况,定期追踪观察不同喂养方式的婴儿体格发育指标,如身长... 医学研究中常会遇到重复观测数据分析的问题。例如,在临床上,定时重复测量患者的某项生理指标,如中毒病人血液中毒物浓度的定时检测;在儿少卫生中,为了研究儿童体格发育情况,定期追踪观察不同喂养方式的婴儿体格发育指标,如身长、坐高、体重等。这类研究对个体的观... 展开更多
关键词 医学研究 重复观测数据 比较 生长曲线模型
原文传递
重复观测数据团体比较的正交回归模型 被引量:4
4
作者 徐勇勇 曹秀堂 《中华预防医学杂志》 CAS CSCD 北大核心 1991年第5期306-308,共3页
关键词 正交回归模型 重复观测数据 团体
原文传递
REP的研究及应用 被引量:4
5
作者 陈长生 徐勇勇 +1 位作者 曹秀堂 张音 《中国卫生统计》 CSCD 北大核心 1998年第6期5-8,共4页
目的:医学研究中经常遇到重复观测数据的统计分析问题,由于重复观测数据间存在一定的自相关性和随机误差的多层性,因而其分析方法有别于一般的统计分析方法。方法:对重复观测数据协方差矩阵的结构特征进行检验,对统计模型的选择、... 目的:医学研究中经常遇到重复观测数据的统计分析问题,由于重复观测数据间存在一定的自相关性和随机误差的多层性,因而其分析方法有别于一般的统计分析方法。方法:对重复观测数据协方差矩阵的结构特征进行检验,对统计模型的选择、生长曲线转化和正交对比变换等方法在参数估计、算法实现和结果解释等方面进行了综合比较。结果:提出了重复观测数据统计分析基本策略,完成了用PASCAL语言编制的专用软件REP,并取得了一批医学应用成果。REP软件有七个功能菜单。结论:本研究成果值得在医学研究中广泛推广和应用。 展开更多
关键词 统计软件 重复测量 重复观测数据
下载PDF
A comparative study of the methods in estimating pharmacokinetic parameters with single-observation-per-animal type data
6
作者 Tingjie Guo1 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2016年第12期869-875,共7页
During pre-clinical pharmacokinetic research, it is not easy to gather complete pharmacokinetic data in each animal. In some cases, an animal can only provide a single observation. Under this circumstance, it is not c... During pre-clinical pharmacokinetic research, it is not easy to gather complete pharmacokinetic data in each animal. In some cases, an animal can only provide a single observation. Under this circumstance, it is not clear how to utilize this data to estimate the pharmacokinetic parameters effectively. This study was aimed at comparing a new method to handle such single-observation-per-animal type data with the conventional method in estimating pharmacokinetic parameters. We assumed there were 15 animals within the study receiving a single dose by intravenous injection. Each animal provided one observation point. There were five time points in total, and each time point contained three measurements. The data were simulated with a one-compartment model with first-order elimination. The inter-individual variabilities (ⅡV) were set to 10%, 30% and 50% for both clearance (CL) and apparent volume of distribution (V). A proportional model was used to describe the residual error, which was also set to 10%, 30% and 50%. Two methods (conventional method and the finite msampling method) to handle with the simulated single-observation-per-animal type data in estimating pharmacokinetic parameters were compared. The conventional method (MI) estimated pharmacokinetic parameters directly with original data, i.e., single-observation-per-animal type data. The finite resampling method (M2) was to expand original data to a new dataset by resampling original data with all kinds of combinations by time. After resampling, each individual in the new dataset contained complete pharmacokinetic data, i.e., in this study, there were 243 (C3^1×C3^1×C3^1×C3^1×C3^1) kinds of possible combinations and each of them was a virtual animal. The study was simulated 100 times by the NONMEM software. According to the results, parameter estimates of CL and V by M2 based on the simulated dataset were closer to their true values, though there was a small difference among different combinations of ⅡVs and the residual errors. In general, M2 was less advantageous over M1 when the residual error increased. It was also influenced by the levels of ⅡV as higher levels of IIV could lead to a decrease in the advantage of M2. However, M2 had no ability to estimate the ⅡV of parameters, nor did M1. The finite resampling method could provide more reliable results compared to the conventional method in estimating pharmacokinetic parameters with single-observation-per-animal type data. Compared to the inter-individual variability, the results of estimation were mainly influenced by the residual error. 展开更多
关键词 Single-observation-per-animal type data Finite resampling Pharmacokinetic parameters NONMEM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部