Two series of soil subsamples, by spiking copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) in an orthogonal design, were prepared using red soil and brown soil, respectively. The results indicated that heavy metal f...Two series of soil subsamples, by spiking copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) in an orthogonal design, were prepared using red soil and brown soil, respectively. The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types, but also on metal loading quantity as well as on interactions among metals in soil. Lead and Cu in red soil appeared mostly in weakly specifically adsorbed (WSA), Fe and Mn oxides bound (OX), and residual (RES) fractions. Zinc existed in all fractions except organic bound one, and Cd was major in water soluble plus exchangeable (SE) one. Different from the results of red soil, Pb and Cu was present in brown soil in all fractions except organic one, but over 75% of Zn and 90% of Cd existed only in SE fraction. Meanwhile, SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher. It is in agreement with low cation exchange capacity and large amounts of metal oxides included in red soil. Metal fractions in soil, especially for water soluble plus exchangeable one, were obviously influenced by other coexisting metals. The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil, which suggest that metal availability be easily affected by their total amounts spiked in red soil. In addition, more metals in red soil were extracted with 0.20 mol L-1 NH4Cl (pH 5.40) than that with 1.0 mol L-1 Mg(NO3)2 (pH 7.0), but the reverse happened in brown soil, implicating significantly different mechanisms of metal desorption from red soil and brown soil.展开更多
The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The inf...The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The influence of the hyperon interactions on hyperon populations in neutron star matter is discussed. The results manifest that when the ratio of the hyperon-to-nucleon couplings increases, all hyperons appear towards low baryon density direction.展开更多
Gibbs free binding energy and adsorption energy between cations and charged soil particles were used to evaluate the interactions between ions and soil particles. The distribution of Gibbs free adsorption energies cou...Gibbs free binding energy and adsorption energy between cations and charged soil particles were used to evaluate the interactions between ions and soil particles. The distribution of Gibbs free adsorption energies could not be determined experimentally before the development of Wien effect measurements in dilute soil suspensions. In the current study, energy relationships between heavy metal ions and particles of Hapli-Udic Argosol (Alfisol) and Ferri-Udic Argosol were inferred from Wien effect measurements in dilute suspensions of homoionic soil particles (〈 2 μm) of the two soils, which were saturated with ions of five heavy metals, in deionized water. The mean Gibbs free binding energies of the heavy metal ions with Hapli-Udic Argosol and Ferri-Udic Argosol particles diminished in the order of Pb^2+ 〉 Cd^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Cr^3+, where the range of binding energies for Hapli-Udic Argosol (7.25-9.32 kJ mol^-1) was similar to that for Ferri-Udic Argosol (7.43-9.35 kJ mol^-1). The electrical field-dependent mean Gibbs free adsorption energies of these heavy metal ions for Hapli-Udic Argosol and for Ferri-Udic Argosol descended in the order: Cu^2+ 〉 Cd2^+ 〉 Pb^2+ 〉 Zn^2+ 〉 Cr^3+, and Cd^2+ 〉 Cu^2+ 〉 Pb^2+ 〉 Zn^2+ 〉 Cr^3+, respectively. The mean Gibbs free adsorption energies of Cu^2+, Zn^2+, Cd^2+, Pb^2+, and Cr^3+ at a field strength of 200 kV cm^-1, for example, were in the range of 0.8-3.2 kJ mo1^-1 for the two soils.展开更多
In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by repetitive measurements for an artificial atom interacting with a structured bath. This bath can be artificially realized with coupled reso...In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by repetitive measurements for an artificial atom interacting with a structured bath. This bath can be artificially realized with coupled resonators in one dimension and possesses photonic band structure like Bloeh electron in a periodic potential. In the presence of repetitive measurements, the pure QAZE is discovered as the observable decay is not negligible even for the atomic energy level spacing outside of the energy band of the artificial bath. If there were no measurements, the decay would not happen outside of the band. In this sense, the enhanced decay is completely induced by measurements through the relaxation channels provided by the bath. Besides, we also discuss the controversial golden rule decay rates originated from the van Hove's singularities and the effects of the counter-rotating terms.展开更多
The adiabatic effective baryon-baryon interactions and dibaryon candidates are studied syst ematicallywith three constituent quark models based on different effective degrees of freedom: Glozman-Riska-Brown Goldstoneb...The adiabatic effective baryon-baryon interactions and dibaryon candidates are studied syst ematicallywith three constituent quark models based on different effective degrees of freedom: Glozman-Riska-Brown Goldstoneboson exchange model based on constituent quark and Goldstone boson coupling; Fujiwara model based on constituentquark gluon coupling and Nijmegen one-boson exchange; QDCSM based on constituent quark and gluon coupling withquark delocalization and color screening. We find that the three models predicted the similar effective baryon-baryoninteractions for roughly two thirds among the 64 states consisted of octet and decuplet baryons. The differences amongthree models and their separate characteristics are also studied.展开更多
In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component....In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.展开更多
It is well known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theo...It is well known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.展开更多
The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron co...The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron correlations, characteristic for strongly correlated systems containing atoms with unoccupied 3d-, 4f- and 5f- shells. Among such systems can be the heterospin systems, complexes of paramagnetic ions of transition metals with organic radicals, because for such objects, spin-spin interaction between unpaired electron spins of different paramagnetic centers is typical. To apply the aforementioned possibility for the organization of real quantum calculations, it is necessary to synthesize such paramagnetic molecules (paramagnetic clusters), where the entangled states will be realized naturally by self-organization of atoms incorporated in these molecules, i.e., without additional external effect of q-bits on the system. The specified self-organization may be due to intramolecular processes and, in particular, intramolecular rearrangement called valence tautomerism, which leads to heterogeneous magnetic states, i.e., to phase layering in paramagnetic cluster owing to interelectron correlations. The states realized during the phase layering can be used for coding the digits. Since such states correspond to specific structures of para-magnetic molecule, they can exist as much as long under certain conditions. In turn, it means that the account of the interelectron correlations, which take place in strongly correlated compounds, allows (at least, in principle) one to create elementary quantum bit of the information capable of modeling the elementary logical operations. Creation of a network of such quantum bits combined in a certain sequence should be considered as a practical step on a way to experimental realization of the idea of quantum computer creation. The group consisting of three quantum points can make the basis of quantum computer. In such a gate, quantum points can be connected via the interaction modeled by spin-spin interaction, characteristic for ABX system in NMR spectroscopy. The tunnel effect, which can be easily realized and controlled, can act as an indicator of bonding in such a block. The calculation procedure can be organized assuming that the initial state of the group corresponds to 1. Infringement of such a state indicates to zero (or, on the contrary). Thus, the calculation in the binary system becomes organized. The creation of a network on the basis of combination of such processors in certain sequence should be considered as a practical step on a way to experimental realization of the idea of the quantum computer creation.展开更多
In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory ...In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.展开更多
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In qua...Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.展开更多
We study the energy spectra of a two-dimensional two-electron quantum dot (QD) with P6schl-Tefler confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are made by using t...We study the energy spectra of a two-dimensional two-electron quantum dot (QD) with P6schl-Tefler confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effectlve-mass approximation. A ground-state behavior (spin singlet-triplet transitions) as a function of the strength of a magnetic field is found. We find that the dot radius R of a Poeschl-Teller potential is important for the ground-state transition and the feature of ground-state for a Poeschl Teller QD and a parabolic QD is similar when R is larger. The larger the well depth, the higher the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in a Poesehl-Teller QD.展开更多
Existence of dark stuff (dark matter + dark energy) is overwhelming. The WIMPs (Weakly interacting massive particles) hypnotized for the existence of dark stuffhave not been detected. We are exploring the linkage...Existence of dark stuff (dark matter + dark energy) is overwhelming. The WIMPs (Weakly interacting massive particles) hypnotized for the existence of dark stuffhave not been detected. We are exploring the linkage of our quantum mechanical probabilistic and gravity to the issue of dark stuff in the universe. Our new horizon gives us a deeper insight, pointing to small black holes as candidates of dark stuff. We invoke the spooky nature of quantum physics which gets spookier to hold the universe together.展开更多
By using a Hamiltonian based on the coupling through flux lines, we have calculated the interaction energy between two fermions via mass less bosons as well as via massive particles. In the case of interaction via mas...By using a Hamiltonian based on the coupling through flux lines, we have calculated the interaction energy between two fermions via mass less bosons as well as via massive particles. In the case of interaction via mass less bosons we obtain an equivalent expression for the Coulomb's energy on the form cthc/r, where a is the fine structure constant. In the case of the interaction via massive particles we obtain that the interaction energy contains a term building the potential well. Also, we take into account the spin-spin interaction of the nucleons and we show that this interaction modulates the interaction potential through a cosine factor. The obtained results are in a good agreement with experimental data, for example, of deuteron. We have determined the radial functions for the deuteron.展开更多
In the framework of the relativistic mean field theory including the hyperon-hyperon(YY) interactions,protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the st...In the framework of the relativistic mean field theory including the hyperon-hyperon(YY) interactions,protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the star maximum mass. The modification to the maximum mass by the U-boson with the strong YY interaction is larger than that with the weak YY interaction. The maximum mass of the protoneutron star is less sensitive to the U-boson than that of the neutron star. The inclusion of the U-boson narrows down the mass window for the hyperonized protoneutron stars. As g^2/μ~2 increases, the species of hyperons, which can appear in a stable protoneutron star decrease. The rotation frequency, the red shift, the momentum of inertia and the total neutrino fraction of PSR J1903-0327 are sensitive to the U-boson and change with g^2/μ~2 in an approximate linear trend. The possible way to constrain the coupling constants of the U-boson is discussed.展开更多
Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry.Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds...Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry.Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds in tandem mass spectrometry are essential and helpful for structural analysis.In some cases,it was often observed that a compound attached by different alkali-metal cations(or proton)exhibits similar fragmentation patterns but the relative abundances of product ions are different.This difference was considered to derive from the different electrostatic interactions of alkali-metal cations(or the bonded effect of proton)with the analyte.The alkali-metal cation with a smaller ionic radius shows stronger electrostatic interaction with the molecule because of its higher charge density.In addition,the bonded effect of the proton is stronger than the electrostatic interaction of the alkali-metal cation.In the present study,which used McLafferty-type rearrangements of even-electron ions([M+Cat]+,Cat=H,Li,Na,K)as model reactions,the effect of cation size in mass spectrometric fragmentation reactions is highlighted.These considerations were also successfully applied to interpret the similar but distinct fragmentation behavior of proton and alkali-metal cation adducts of a synthetic compound(2-(acetamido(phenyl)methyl)-3-oxobutanoate)and a drug(entecavir).展开更多
In this article, we study the (1/2) ± and (3/2)± triply heavy baryon states in a systematic way by subtracting the contributions from the corresponding (1/2)■ and (3/2)■ triply heavy baryon states with the...In this article, we study the (1/2) ± and (3/2)± triply heavy baryon states in a systematic way by subtracting the contributions from the corresponding (1/2)■ and (3/2)■ triply heavy baryon states with the QCD sum rules, and make reasonable predictions for their masses.展开更多
The authors study the multi-soliton, multi-cuspon solutions to the Camassa- Holm equation and their interaction. According to the solution formula due to Li in 2004 and 2005, the authors give the proper choice of para...The authors study the multi-soliton, multi-cuspon solutions to the Camassa- Holm equation and their interaction. According to the solution formula due to Li in 2004 and 2005, the authors give the proper choice of parameters for multi-soliton and multicuspon solutions, especially for n ≥ 3 case. The numerical method (the so-called local discontinuous Galerkin (LDG) method) is also used to simulate the solutions and give the comparison of exact solutions and numerical solutions. The numerical results for the two-soliton and one-cuspon, one-soliton and two-cuspon, three-soliton, three-cuspon, three-soliton and one-cuspon, two-soliton and two-cuspon, one-soliton and three-cuspon, four-soliton and four-cuspon are investigated respectively. by the numerical method for the first time展开更多
基金Project supported by the President Foundation of the Chinese Academy of Sciences the Laboratory of Material Cycling in Pedosphere, the Chinese Academy of Sciences.
文摘Two series of soil subsamples, by spiking copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) in an orthogonal design, were prepared using red soil and brown soil, respectively. The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types, but also on metal loading quantity as well as on interactions among metals in soil. Lead and Cu in red soil appeared mostly in weakly specifically adsorbed (WSA), Fe and Mn oxides bound (OX), and residual (RES) fractions. Zinc existed in all fractions except organic bound one, and Cd was major in water soluble plus exchangeable (SE) one. Different from the results of red soil, Pb and Cu was present in brown soil in all fractions except organic one, but over 75% of Zn and 90% of Cd existed only in SE fraction. Meanwhile, SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher. It is in agreement with low cation exchange capacity and large amounts of metal oxides included in red soil. Metal fractions in soil, especially for water soluble plus exchangeable one, were obviously influenced by other coexisting metals. The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil, which suggest that metal availability be easily affected by their total amounts spiked in red soil. In addition, more metals in red soil were extracted with 0.20 mol L-1 NH4Cl (pH 5.40) than that with 1.0 mol L-1 Mg(NO3)2 (pH 7.0), but the reverse happened in brown soil, implicating significantly different mechanisms of metal desorption from red soil and brown soil.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10047001 and 10275029+2 种基金the State Key Basic Research Development Program under Grant No.G2000-0774-07the CAS Knowledge Innovation Project under Contract No.KJCX2-SW-N02
文摘The numerical results of the populations for the baryon octet in neutron star matter have been presented by solving a set transcendental equations in the framework of the relativistic mean field approximation. The influence of the hyperon interactions on hyperon populations in neutron star matter is discussed. The results manifest that when the ratio of the hyperon-to-nucleon couplings increases, all hyperons appear towards low baryon density direction.
基金Project supported by the National Natural Science Foundation of China(Nos.40401030 and 20577054).
文摘Gibbs free binding energy and adsorption energy between cations and charged soil particles were used to evaluate the interactions between ions and soil particles. The distribution of Gibbs free adsorption energies could not be determined experimentally before the development of Wien effect measurements in dilute soil suspensions. In the current study, energy relationships between heavy metal ions and particles of Hapli-Udic Argosol (Alfisol) and Ferri-Udic Argosol were inferred from Wien effect measurements in dilute suspensions of homoionic soil particles (〈 2 μm) of the two soils, which were saturated with ions of five heavy metals, in deionized water. The mean Gibbs free binding energies of the heavy metal ions with Hapli-Udic Argosol and Ferri-Udic Argosol particles diminished in the order of Pb^2+ 〉 Cd^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Cr^3+, where the range of binding energies for Hapli-Udic Argosol (7.25-9.32 kJ mol^-1) was similar to that for Ferri-Udic Argosol (7.43-9.35 kJ mol^-1). The electrical field-dependent mean Gibbs free adsorption energies of these heavy metal ions for Hapli-Udic Argosol and for Ferri-Udic Argosol descended in the order: Cu^2+ 〉 Cd2^+ 〉 Pb^2+ 〉 Zn^2+ 〉 Cr^3+, and Cd^2+ 〉 Cu^2+ 〉 Pb^2+ 〉 Zn^2+ 〉 Cr^3+, respectively. The mean Gibbs free adsorption energies of Cu^2+, Zn^2+, Cd^2+, Pb^2+, and Cr^3+ at a field strength of 200 kV cm^-1, for example, were in the range of 0.8-3.2 kJ mo1^-1 for the two soils.
基金Supported by the Natural Science Foundation of China under Grant Nos.10974209 and 10935010 the National 973 Program under Grant No.2006CB921205China Postdoctoral Science Foundation under Grant No.20100470584
文摘In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by repetitive measurements for an artificial atom interacting with a structured bath. This bath can be artificially realized with coupled resonators in one dimension and possesses photonic band structure like Bloeh electron in a periodic potential. In the presence of repetitive measurements, the pure QAZE is discovered as the observable decay is not negligible even for the atomic energy level spacing outside of the energy band of the artificial bath. If there were no measurements, the decay would not happen outside of the band. In this sense, the enhanced decay is completely induced by measurements through the relaxation channels provided by the bath. Besides, we also discuss the controversial golden rule decay rates originated from the van Hove's singularities and the effects of the counter-rotating terms.
文摘The adiabatic effective baryon-baryon interactions and dibaryon candidates are studied syst ematicallywith three constituent quark models based on different effective degrees of freedom: Glozman-Riska-Brown Goldstoneboson exchange model based on constituent quark and Goldstone boson coupling; Fujiwara model based on constituentquark gluon coupling and Nijmegen one-boson exchange; QDCSM based on constituent quark and gluon coupling withquark delocalization and color screening. We find that the three models predicted the similar effective baryon-baryoninteractions for roughly two thirds among the 64 states consisted of octet and decuplet baryons. The differences amongthree models and their separate characteristics are also studied.
文摘In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.
文摘It is well known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.
文摘The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron correlations, characteristic for strongly correlated systems containing atoms with unoccupied 3d-, 4f- and 5f- shells. Among such systems can be the heterospin systems, complexes of paramagnetic ions of transition metals with organic radicals, because for such objects, spin-spin interaction between unpaired electron spins of different paramagnetic centers is typical. To apply the aforementioned possibility for the organization of real quantum calculations, it is necessary to synthesize such paramagnetic molecules (paramagnetic clusters), where the entangled states will be realized naturally by self-organization of atoms incorporated in these molecules, i.e., without additional external effect of q-bits on the system. The specified self-organization may be due to intramolecular processes and, in particular, intramolecular rearrangement called valence tautomerism, which leads to heterogeneous magnetic states, i.e., to phase layering in paramagnetic cluster owing to interelectron correlations. The states realized during the phase layering can be used for coding the digits. Since such states correspond to specific structures of para-magnetic molecule, they can exist as much as long under certain conditions. In turn, it means that the account of the interelectron correlations, which take place in strongly correlated compounds, allows (at least, in principle) one to create elementary quantum bit of the information capable of modeling the elementary logical operations. Creation of a network of such quantum bits combined in a certain sequence should be considered as a practical step on a way to experimental realization of the idea of quantum computer creation. The group consisting of three quantum points can make the basis of quantum computer. In such a gate, quantum points can be connected via the interaction modeled by spin-spin interaction, characteristic for ABX system in NMR spectroscopy. The tunnel effect, which can be easily realized and controlled, can act as an indicator of bonding in such a block. The calculation procedure can be organized assuming that the initial state of the group corresponds to 1. Infringement of such a state indicates to zero (or, on the contrary). Thus, the calculation in the binary system becomes organized. The creation of a network on the basis of combination of such processors in certain sequence should be considered as a practical step on a way to experimental realization of the idea of the quantum computer creation.
文摘In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.
文摘Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475021
文摘We study the energy spectra of a two-dimensional two-electron quantum dot (QD) with P6schl-Tefler confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effectlve-mass approximation. A ground-state behavior (spin singlet-triplet transitions) as a function of the strength of a magnetic field is found. We find that the dot radius R of a Poeschl-Teller potential is important for the ground-state transition and the feature of ground-state for a Poeschl Teller QD and a parabolic QD is similar when R is larger. The larger the well depth, the higher the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in a Poesehl-Teller QD.
文摘Existence of dark stuff (dark matter + dark energy) is overwhelming. The WIMPs (Weakly interacting massive particles) hypnotized for the existence of dark stuffhave not been detected. We are exploring the linkage of our quantum mechanical probabilistic and gravity to the issue of dark stuff in the universe. Our new horizon gives us a deeper insight, pointing to small black holes as candidates of dark stuff. We invoke the spooky nature of quantum physics which gets spookier to hold the universe together.
文摘By using a Hamiltonian based on the coupling through flux lines, we have calculated the interaction energy between two fermions via mass less bosons as well as via massive particles. In the case of interaction via mass less bosons we obtain an equivalent expression for the Coulomb's energy on the form cthc/r, where a is the fine structure constant. In the case of the interaction via massive particles we obtain that the interaction energy contains a term building the potential well. Also, we take into account the spin-spin interaction of the nucleons and we show that this interaction modulates the interaction potential through a cosine factor. The obtained results are in a good agreement with experimental data, for example, of deuteron. We have determined the radial functions for the deuteron.
基金Supported by Jiangsu Province Natural Science Foundation Youth Fund of China under Grant No.Bk20140982National Natural Science Foundation of China under Grant No.11447165+1 种基金Youth Innovation Promotion Association,Chinese Academy of Sciences under Grant No.2016056the Development Project of Science and Technology of Jilin Province under Grant No.20180520077JH
文摘In the framework of the relativistic mean field theory including the hyperon-hyperon(YY) interactions,protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the star maximum mass. The modification to the maximum mass by the U-boson with the strong YY interaction is larger than that with the weak YY interaction. The maximum mass of the protoneutron star is less sensitive to the U-boson than that of the neutron star. The inclusion of the U-boson narrows down the mass window for the hyperonized protoneutron stars. As g^2/μ~2 increases, the species of hyperons, which can appear in a stable protoneutron star decrease. The rotation frequency, the red shift, the momentum of inertia and the total neutrino fraction of PSR J1903-0327 are sensitive to the U-boson and change with g^2/μ~2 in an approximate linear trend. The possible way to constrain the coupling constants of the U-boson is discussed.
基金financially supported by the National Natural Science Foundation of China(21025207,21372199)
文摘Protonation and alkali-metal cation adduction are the most important ionization processes in soft-ionization mass spectrometry.Studies on the fragmentation mechanism of protonated and alkali-metal-cationized compounds in tandem mass spectrometry are essential and helpful for structural analysis.In some cases,it was often observed that a compound attached by different alkali-metal cations(or proton)exhibits similar fragmentation patterns but the relative abundances of product ions are different.This difference was considered to derive from the different electrostatic interactions of alkali-metal cations(or the bonded effect of proton)with the analyte.The alkali-metal cation with a smaller ionic radius shows stronger electrostatic interaction with the molecule because of its higher charge density.In addition,the bonded effect of the proton is stronger than the electrostatic interaction of the alkali-metal cation.In the present study,which used McLafferty-type rearrangements of even-electron ions([M+Cat]+,Cat=H,Li,Na,K)as model reactions,the effect of cation size in mass spectrometric fragmentation reactions is highlighted.These considerations were also successfully applied to interpret the similar but distinct fragmentation behavior of proton and alkali-metal cation adducts of a synthetic compound(2-(acetamido(phenyl)methyl)-3-oxobutanoate)and a drug(entecavir).
基金Supported by National Natural Science Foundation under Grant No.11075053the Fundamental Research Funds for the Central Universities
文摘In this article, we study the (1/2) ± and (3/2)± triply heavy baryon states in a systematic way by subtracting the contributions from the corresponding (1/2)■ and (3/2)■ triply heavy baryon states with the QCD sum rules, and make reasonable predictions for their masses.
基金Project supported by the National Natural Science Foundation of China (Nos.10971211,11031007)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No.200916)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of the Chinese Academy of Sciences,Program for New Century Excellent Talents in University of China (No.09-0922)the Fundamental Research Funds for the Central Universities (No.WK0010000005)
文摘The authors study the multi-soliton, multi-cuspon solutions to the Camassa- Holm equation and their interaction. According to the solution formula due to Li in 2004 and 2005, the authors give the proper choice of parameters for multi-soliton and multicuspon solutions, especially for n ≥ 3 case. The numerical method (the so-called local discontinuous Galerkin (LDG) method) is also used to simulate the solutions and give the comparison of exact solutions and numerical solutions. The numerical results for the two-soliton and one-cuspon, one-soliton and two-cuspon, three-soliton, three-cuspon, three-soliton and one-cuspon, two-soliton and two-cuspon, one-soliton and three-cuspon, four-soliton and four-cuspon are investigated respectively. by the numerical method for the first time