This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to ...This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to locate at the image center with zero skew and the same aspect ratio, and the interior parameters are fixed, so the self-calibration becomes focal-length cali- bration. Existing focal length calibration methods are direct solutions of a quadric composed of fundamental matrix, which are sensitive to noise. A quaternion-based linear iterative Least-Square Method is proposed in this paper, and one-dimensional searching for optimal focal length in a constrained region instead of solving optimization problems with inequality constraints is applied to simplify the computation complexity, then unique rotational matrix and translate vector are recovered. Experiments with simulation data and real images are given to verify the algorithm.展开更多
In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective da...In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective dark energy behaving like perfect fluid, and suggest that there are interactions between pressureless matter as well as dark energy. We construct the corresponding autonomous system of equations to check the stability of the model for non phantom, vacuum and phantom phases. It is concluded that critical points remain more stable in phantom phase as compared to non phantom and vacuum cases. Finaily, we discuss the cosmological behavior of the model through some cosmological parameters.展开更多
Inspired by Verlinde’s idea,some modified versions of entropic gravity have been suggested.Extending them in a unified formalism,herein we derive the generalized gravitational equations accordingly.From gravitational...Inspired by Verlinde’s idea,some modified versions of entropic gravity have been suggested.Extending them in a unified formalism,herein we derive the generalized gravitational equations accordingly.From gravitational equations,the energy-momentum conservation law and cosmological equations are investigated.The covariant conservation law of energy-momentum tensor severely constrains viable modifications of entropic gravity.A discrepancy arises when two independent methods are applied to the homogeneous isotropic universe,posing a serious challenge to modified models of entropic gravity.展开更多
文摘This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to locate at the image center with zero skew and the same aspect ratio, and the interior parameters are fixed, so the self-calibration becomes focal-length cali- bration. Existing focal length calibration methods are direct solutions of a quadric composed of fundamental matrix, which are sensitive to noise. A quaternion-based linear iterative Least-Square Method is proposed in this paper, and one-dimensional searching for optimal focal length in a constrained region instead of solving optimization problems with inequality constraints is applied to simplify the computation complexity, then unique rotational matrix and translate vector are recovered. Experiments with simulation data and real images are given to verify the algorithm.
文摘In this paper, we study the stability of locally rotationally symmetric (LRS) Bianchi I universe model in f(T) gravity through phase space analysis. We assume that the f(T) gravity can be treated as effective dark energy behaving like perfect fluid, and suggest that there are interactions between pressureless matter as well as dark energy. We construct the corresponding autonomous system of equations to check the stability of the model for non phantom, vacuum and phantom phases. It is concluded that critical points remain more stable in phantom phase as compared to non phantom and vacuum cases. Finaily, we discuss the cosmological behavior of the model through some cosmological parameters.
基金supported by the National Natural Science Foundation of China(Grant No.11105053)the Open Research Foundation of Shanghai Key Laboratory of Particle Physics and Cosmology(Grant No.11DZ2230700)
文摘Inspired by Verlinde’s idea,some modified versions of entropic gravity have been suggested.Extending them in a unified formalism,herein we derive the generalized gravitational equations accordingly.From gravitational equations,the energy-momentum conservation law and cosmological equations are investigated.The covariant conservation law of energy-momentum tensor severely constrains viable modifications of entropic gravity.A discrepancy arises when two independent methods are applied to the homogeneous isotropic universe,posing a serious challenge to modified models of entropic gravity.