期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
抗战时期重庆工人工资水平与家庭消费状况 被引量:1
1
作者 张慧卿 《巢湖学院学报》 2013年第5期75-81,共7页
作为抗战时期的陪都,抗战改变了重庆的政治地位,也使得重庆的社会结构发生了巨大变化,工人群体逐渐壮大崛起并成为社会的重要阶层。论文通过对抗日战争期间陪都重庆工人工作强度、真实工资以及工人家庭生活消费状况的考察发现,高强度的... 作为抗战时期的陪都,抗战改变了重庆的政治地位,也使得重庆的社会结构发生了巨大变化,工人群体逐渐壮大崛起并成为社会的重要阶层。论文通过对抗日战争期间陪都重庆工人工作强度、真实工资以及工人家庭生活消费状况的考察发现,高强度的工作并没有给工人高工资,表面上工人名义工资有所提高,但其真实工资是直线下降的,由于战时通货膨胀以及物价不断上涨等恶性因素的影响,重庆工人工酬的增加远远达不到生活指数上升的程度。论文认为其时重庆的工人工资水平相当的低下、消费水平低下,生活举步维艰。 展开更多
关键词 抗日战争 重庆工人 工资 消费
下载PDF
Artificial neural network modeling of water quality of the Yangtze River system:a case study in reaches crossing the city of Chongqing 被引量:11
2
作者 郭劲松 李哲 《Journal of Chongqing University》 CAS 2009年第1期1-9,共9页
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod... An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models. 展开更多
关键词 water quality modeling Yangtze River artificial neural network back-propagation model radial basis functionmodel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部