It has been generally unclear over the mechanism of inhibitory influence of silicate on structural rearrangement or solely physical adsorption onto manganese dioxide (MnO2) about the decomposition of hydrogen peroxi...It has been generally unclear over the mechanism of inhibitory influence of silicate on structural rearrangement or solely physical adsorption onto manganese dioxide (MnO2) about the decomposition of hydrogen peroxide (H2O2). Consequently, several experiments were carried out by using MnO2 as a catalyst for the decomposition of H2O2 in a concentration series under certain concentrations of silicates. The silicates were analyzed by using a molybdenum blue colorimetric method. The results showed that the determination of silicates was inhibited by H2O2, whose inhibitory effect was greatly increased by increasing its concentration, but not limited by pH. SEM-EDX (scanning electron microscopy-energy dispersive x-ray spectrometry) results showed that the adsorption of silicates onto the surface of MnO2 was not purely via a structural rearrangement, with increasing Mn atoms protruding on the outer surface by covering oxygen and silicon atoms. XRD (X-ray diffraction) and FTIR (Fourier transform infrared) spectra results further revealed no significant total crystal structural changes in MnO2 after the adsorption of silicates, but only a small shift of 0.21° at 2e from 56.36° to 56.15° , and a FTIR vibration showed at around 1 050 cm-1. The results, therefore, showed that silicate adsorption onto MnO2 took place via both surface adsorption and structural rearrangement by interfacial reaction.展开更多
We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly s...We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (Ro) and ammonia excretion rate (RN) (P〈0.01). The interactive effects between salinity and body mass on Ro and RN were insignificant (P〉0.05) and highly significant (P〈0.01), respectively. Ro and RN of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between Ro and body mass was represented by Ro=aWb (R^2=0.956, P〈0.01). The relationship between RN and the body mass ofB. pectinirostris was represented by RN-cW^at (R^2=0.966, P〈0.01). The Ro/RN (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy significantly higher at 27 than at other salinity levels B, pectinirostris is 27. source within the salinity range 12 32. Ro andRN were Our results suggest that the optimum salinity level for B. pectinirostris is 27.展开更多
Objective To devellop directly molecular evolution Of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremelly slow and are unable to nitrify effectively inorganic nitrogen in wastew...Objective To devellop directly molecular evolution Of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremelly slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatmem. Methods The norB gene coding the ntitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PeR and staggered extension process PCR, the sequence was differem from its parental DNA fragmems and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by DNA-shuffling was up to 42.9 mg/L.d, which was almost 10 times higher than that of its parental bacteria. Furthermore, the modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures. Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.展开更多
Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD...Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.展开更多
The AIEt3-promoted tandem reductive rearrangement reactions of epoxides was studied at B3LYP/6- 31C(d,p) level. For the model compound α-hydroxy epoxides, two possible reaction pathways Ⅰ and Ⅱ were calculated. T...The AIEt3-promoted tandem reductive rearrangement reactions of epoxides was studied at B3LYP/6- 31C(d,p) level. For the model compound α-hydroxy epoxides, two possible reaction pathways Ⅰ and Ⅱ were calculated. The main difference is the order of ethylene release and six- to five-member ring rearrangement. The ring contraction rearrangement in pathway Ⅰ is the first step and this step is the rate controlling step with a free energy barrier of 116.62 kJ/mol. For pathway Ⅱ, the ethylene release occurs first, and is followed by a six-member ring opening reaction which is the rate controlling step, and the barrier is 251.38 kJ/mol. The reason for such high barrier is that the ethylene release results in the following reaction being more difficult. The results show that pathway Ⅰ (C-C rearrangement and then ethylene release) is more favorable, which is consistent with experimental results.展开更多
An efficient method for the preparation of 2-deoxy-glycopyranosides was developed by using 2,3-anhydrothioglycosides as the glycosylating agents.The reaction proceeded by the Cu(OTf)_2-mediated rearrangement of 2,3-an...An efficient method for the preparation of 2-deoxy-glycopyranosides was developed by using 2,3-anhydrothioglycosides as the glycosylating agents.The reaction proceeded by the Cu(OTf)_2-mediated rearrangement of 2,3-anhydrothiosugars.And high anomeric stereoselectivity was achieved.The disclosed methodology may find applications in the preparation of many biologically important 2-deoxy-glycosides.展开更多
Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously t...Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously the most efficient and direct preparation of these compounds. However, higher oxidation potential of benzene derivatives makes such oxidative couplings much more difficult than other arenes. Only very limited advances have been achieved on direct formation of the crucial C–C bond between two phenyl derivatives by dehydrogenative phenyl coupling in the last two decades. This article briefly summarized and commented a number of representative recent achievements in this attractive field, including homo-, cross-and intramolecular rearrangement and couplings, as well as their applications in organic synthesis.展开更多
基金supported by the Young National Natural Science Foundation of China(No.21302096)the Young Natural Science Foundation of Jiangsu Province(Nos.BK20171449,BK20130962)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYLX16_0844)the Project Fund from the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
基金Supported by the Provincial Basic Research Program of Hebei Education Department(ZD2015110)the National Special Project on Key Technologies and Demonstration of Wetland Ecological Restoration in the Haihe River Basin(2014ZX07203008)
文摘It has been generally unclear over the mechanism of inhibitory influence of silicate on structural rearrangement or solely physical adsorption onto manganese dioxide (MnO2) about the decomposition of hydrogen peroxide (H2O2). Consequently, several experiments were carried out by using MnO2 as a catalyst for the decomposition of H2O2 in a concentration series under certain concentrations of silicates. The silicates were analyzed by using a molybdenum blue colorimetric method. The results showed that the determination of silicates was inhibited by H2O2, whose inhibitory effect was greatly increased by increasing its concentration, but not limited by pH. SEM-EDX (scanning electron microscopy-energy dispersive x-ray spectrometry) results showed that the adsorption of silicates onto the surface of MnO2 was not purely via a structural rearrangement, with increasing Mn atoms protruding on the outer surface by covering oxygen and silicon atoms. XRD (X-ray diffraction) and FTIR (Fourier transform infrared) spectra results further revealed no significant total crystal structural changes in MnO2 after the adsorption of silicates, but only a small shift of 0.21° at 2e from 56.36° to 56.15° , and a FTIR vibration showed at around 1 050 cm-1. The results, therefore, showed that silicate adsorption onto MnO2 took place via both surface adsorption and structural rearrangement by interfacial reaction.
基金Supported by the Natural Science Foundation of Guangdong Province(No.8152408801000015)
文摘We evaluated the effects of salinity and body mass on the oxygen consumption rate and ammonia excretion rate of mudskipper Boleophthalmus pectinirostris under laboratory conditions. Salinity and body mass had highly significant effects on the oxygen consumption rate (Ro) and ammonia excretion rate (RN) (P〈0.01). The interactive effects between salinity and body mass on Ro and RN were insignificant (P〉0.05) and highly significant (P〈0.01), respectively. Ro and RN of B. pectinirostris decreased significantly as the individual body mass increased. The relationship between Ro and body mass was represented by Ro=aWb (R^2=0.956, P〈0.01). The relationship between RN and the body mass ofB. pectinirostris was represented by RN-cW^at (R^2=0.966, P〈0.01). The Ro/RN (O:N) ratios increased significantly as the salinity increased from 12 to 27, but decreased as salinity increased from 27 to 32. The atomic O:N ratios were significantly higher at 27 than at other salinity levels. The average O:N ratio was 25.25. Lipid and carbohydrate were the primary energy sources and protein was the secondary energy significantly higher at 27 than at other salinity levels B, pectinirostris is 27. source within the salinity range 12 32. Ro andRN were Our results suggest that the optimum salinity level for B. pectinirostris is 27.
基金This study was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2001AA214191).
文摘Objective To devellop directly molecular evolution Of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremelly slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatmem. Methods The norB gene coding the ntitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PeR and staggered extension process PCR, the sequence was differem from its parental DNA fragmems and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by DNA-shuffling was up to 42.9 mg/L.d, which was almost 10 times higher than that of its parental bacteria. Furthermore, the modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures. Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.
基金Supported by the-National Natural Science Foundation of China (30671448) the Science and Technology Pillar Program of Hebei Province 12220802D)
文摘Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.
基金ACKNOWLEDGMENTS This work was supported by the Chinese Academy of Sciences, the Specialized Research Fund for the Doctoral Program of Higher Education, the National Basic Research Program of China (No.2007CB815204), and the China Postdoctoral Science Foundation (No.20070420726 and No.20070410793).
文摘The AIEt3-promoted tandem reductive rearrangement reactions of epoxides was studied at B3LYP/6- 31C(d,p) level. For the model compound α-hydroxy epoxides, two possible reaction pathways Ⅰ and Ⅱ were calculated. The main difference is the order of ethylene release and six- to five-member ring rearrangement. The ring contraction rearrangement in pathway Ⅰ is the first step and this step is the rate controlling step with a free energy barrier of 116.62 kJ/mol. For pathway Ⅱ, the ethylene release occurs first, and is followed by a six-member ring opening reaction which is the rate controlling step, and the barrier is 251.38 kJ/mol. The reason for such high barrier is that the ethylene release results in the following reaction being more difficult. The results show that pathway Ⅰ (C-C rearrangement and then ethylene release) is more favorable, which is consistent with experimental results.
基金National Natural Science Foundation of China (Grant No.20732001)Ministry of Science and Technology of China(Grant No.2009ZX09501-011).
文摘An efficient method for the preparation of 2-deoxy-glycopyranosides was developed by using 2,3-anhydrothioglycosides as the glycosylating agents.The reaction proceeded by the Cu(OTf)_2-mediated rearrangement of 2,3-anhydrothiosugars.And high anomeric stereoselectivity was achieved.The disclosed methodology may find applications in the preparation of many biologically important 2-deoxy-glycosides.
基金supported by the National Natural Science Foundation of China(21472087)
文摘Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously the most efficient and direct preparation of these compounds. However, higher oxidation potential of benzene derivatives makes such oxidative couplings much more difficult than other arenes. Only very limited advances have been achieved on direct formation of the crucial C–C bond between two phenyl derivatives by dehydrogenative phenyl coupling in the last two decades. This article briefly summarized and commented a number of representative recent achievements in this attractive field, including homo-, cross-and intramolecular rearrangement and couplings, as well as their applications in organic synthesis.