期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一类模糊重构度分类器
1
作者 郭旋 《工业控制计算机》 2023年第5期109-110,133,共3页
作为经典的分类器,模糊K近邻分类器(FKNN),有着较为广泛的应用,且衍生出许多改进分类器。不同于模糊K近邻分类器使用简单的投票策略构建模糊集,提出一种新的分类器,即基于重构度模糊分类器。得益于对样本重构方法的改良,新的分类器避免... 作为经典的分类器,模糊K近邻分类器(FKNN),有着较为广泛的应用,且衍生出许多改进分类器。不同于模糊K近邻分类器使用简单的投票策略构建模糊集,提出一种新的分类器,即基于重构度模糊分类器。得益于对样本重构方法的改良,新的分类器避免了传统FKNN需要根据不同的数据集合调整相应的K参数的不足,而是以数据集为驱动,进而无参数调整。同时,由于重构度从结构上对噪声所产生的影响有一定抑制作用,所以该分类器对于图片噪声的鲁棒性较强。实验结果也表明基于重构度的模糊分类器在加噪声的AR人脸库上都取得了超越其他类FKNN的表现。 展开更多
关键词 模糊分类器 噪声鲁棒性 自适应模型 重构度模糊集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部