期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
重构神经网络模型及开关磁阻电机恒转矩控制 被引量:3
1
作者 党选举 陈童 +3 位作者 姜辉 伍锡如 张向文 唐士杰 《组合机床与自动化加工技术》 北大核心 2019年第9期72-76,共5页
针对开关磁阻电机(SRM)难以准确建模及计算恒转矩下的控制电流而导致的转矩脉动过大的问题,构建一种新的转矩-电流神经网络模型用于得到恒转矩下的控制电流。在新神经网络中,针对SRM转矩-电流特有的强非线性特性,设计能够描述SRM电流基... 针对开关磁阻电机(SRM)难以准确建模及计算恒转矩下的控制电流而导致的转矩脉动过大的问题,构建一种新的转矩-电流神经网络模型用于得到恒转矩下的控制电流。在新神经网络中,针对SRM转矩-电流特有的强非线性特性,设计能够描述SRM电流基本变化规律的新型激励函数,使神经网络结构更接近SRM的本质特性,有利于加快建模速度,提高建模精度。所重构神经网络模型通过在线学习计算恒转矩下对应的控制电流对SRM进行控制,实现转矩脉动的有效抑制。仿真结果表明,与通用神经网络相比,提出的重构神经网络模型能更好地描述SRM的强非线性特性,得到恒转矩下对应的控制电流,有效地抑制转矩脉动。 展开更多
关键词 开关磁阻电机 转矩脉动 重构神经网络 转矩-电流模型
下载PDF
早期工作阶段滚动轴承剩余寿命预测算法
2
作者 郝金骁 王龑 +1 位作者 郭倩宇 张文强 《计算机工程》 CAS CSCD 北大核心 2024年第12期48-58,共11页
传统寿命预测算法在包含退化阶段数据的滚动轴承寿命预测方面已取得不错的效果,但是由于刚运行和运行一段时间数据相似,因此在只有正常工作阶段数据的情况下难以准确预测。储备池计算(RC)可根据之前时刻数据预测多个时间步长之后的数据... 传统寿命预测算法在包含退化阶段数据的滚动轴承寿命预测方面已取得不错的效果,但是由于刚运行和运行一段时间数据相似,因此在只有正常工作阶段数据的情况下难以准确预测。储备池计算(RC)可根据之前时刻数据预测多个时间步长之后的数据,通过数据模拟补充退化数据,提高了将早期预测转化为传统预测的可能性。回声状态网络(ESN)可在充分利用时序信息的基础上输出当前时刻的相关维度。针对早期阶段轴承寿命预测,提出一个基于RC和ESN的递归可重构神经(RRN)网络的算法。首先设计一个基于RC的特征模拟网络,根据早期特征模拟包含退化数据的全寿命周期数据;然后提出一个基于ESN的寿命预测网络,根据输入的模拟特征输出剩余寿命。在PHM 2012数据集上验证了该算法的有效性,实验结果表明,与目前效果较好的算法相比,该算法在原测试数据实验与早期阶段剩余寿命预测的实验平均误差分别降低了61.35%和53.14%,具有较优的预测性能。 展开更多
关键词 早期剩余寿命预测 滚动轴承 数据模拟 储备池计算 回声状态网络 递归可重构神经网络
下载PDF
基于SSA-LERNN的光伏出力超短期预测研究 被引量:1
3
作者 王育飞 倪安安 +1 位作者 朱里 杨启星 《控制工程》 CSCD 北大核心 2022年第11期1941-1947,共7页
针对光伏发电功率模型预测准确度依赖数据质量的问题,提出一种结合奇异谱分析和局域情绪重构神经网络的超短期光伏发电功率组合预测方法。首先,利用奇异谱分析对实测光伏发电功率进行降噪处理,从复杂干扰信号中提取出平稳性好、可预测... 针对光伏发电功率模型预测准确度依赖数据质量的问题,提出一种结合奇异谱分析和局域情绪重构神经网络的超短期光伏发电功率组合预测方法。首先,利用奇异谱分析对实测光伏发电功率进行降噪处理,从复杂干扰信号中提取出平稳性好、可预测性强的有用信号。为解决奇异谱分析中参数选择主观性强、方法不系统的问题,采用基于搜索机制优化奇异谱分析参数的选取方法,以进一步提升降噪效果;然后,利用改进C-C法对降噪后的光伏发电功率时间序列进行混沌相空间重构,以深度挖掘数据隐含波动信息;最后,建立局域情绪重构神经网络预测模型捕捉相空间轨迹规律,超短期预测光伏出力。仿真结果表明,与局域情绪重构神经网络预测法以及边缘型人工情绪神经网络预测法相比,所提预测方法的预测准确性更高。 展开更多
关键词 光伏发电功率预测 奇异谱分析 混沌 相空间重构 局域情绪重构神经网络
下载PDF
ADAPTIVE RECONFIGURATION CONTROL FOR FIGHTERS BASED ON WEIGHTED MULTIPLE-MODEL-STRUCTURE
4
作者 肖前贵 张敏 胡寿松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期219-225,共7页
Aimed at the complex flight control system of a fighter,a kind of robust adaptive control methods using multiple models is presented to make the control system track the given signal under different working conditions... Aimed at the complex flight control system of a fighter,a kind of robust adaptive control methods using multiple models is presented to make the control system track the given signal under different working conditions and to reconfigure the control law for some structural failures. Firstly,the multiple-model control structure is formed by several linear models and one fuzzy model. In the fuzzy logic way,weights of the multiple-model adaptive controller are obtained. Then,a dynamic structure adaptive neural network is introduced to stabilize the whole system and eliminate the influence caused by the frequent switching. Simulation results show that the control method is effective by demonstrating the normal flight process and the control simulation with failures. 展开更多
关键词 robust control neural networks reconfiguration control
下载PDF
A Low Resolution Image Restoration Method based on BP Neural Network 被引量:2
5
作者 王明毅 郭明昊 +1 位作者 俎敏敏 冀德刚 《Agricultural Science & Technology》 CAS 2017年第4期687-690,共4页
In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures... In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm. 展开更多
关键词 Common information matrix INTERPOLATION Neural network Restructuring matrix
下载PDF
A Neural Network based Method for Detection of Weak Underwater Signals 被引量:1
6
作者 潘俊阳 韩晶 杨士莪 《Journal of Marine Science and Application》 2010年第3期256-261,共6页
Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function ... Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B. 展开更多
关键词 detection theory underwater weak signal extended Kalman filter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部