The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behavior. The toxicity metal is dependent on its chemical form and therefore removal of metal i...The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behavior. The toxicity metal is dependent on its chemical form and therefore removal of metal is more meaningful than the estimation of its concentrations. In this study, the batch experiments were carried out under 30℃ to study the effect of pH, initial Cr concentration, adsorbent dose and contact time on the removal of Cr (lII). The maximum adsorption efficiency (99%) was observed when 1.5 g of pond mud was used for removal ofCr (Ⅲ) from test solution containing 150 mg·Cr / 100 ml. The optimal pH and contact time recorded during the study were 6 and 10.0, respectively.展开更多
Several studies focused on nutrients have shown that land use and management practices have a strong influence on stream chemistry. Much less is known about the relationship between heavy metal concentrations in strea...Several studies focused on nutrients have shown that land use and management practices have a strong influence on stream chemistry. Much less is known about the relationship between heavy metal concentrations in stream water and land use. We compared the variability of trace element concentrations in the stream of a catchment exposed to different types of management practices and land use. This is a small catchment with previous agricultural diffuse and accidental pollution mainly due to the spreading of slurry. The agricultural land was reforested in July 1998. The concentrations of Fe, Mn, Cu and Zn in dissolved phase from surface water samples collected at the catchment outlet were determined over a period of approximately six years. The results suggest that dissolved metal concentrations, especially Cu and Mn, are controlled by the land use and management practices. The median concentrations of studied metals were the highest in the agricultural period. It was also during this period when they all presented the highest concentration peaks, coinciding with a time of heavy application of manure to the soil. Dissolved Fe and Mn showed high dependence of flow rate, whereas Cu and Zn concentrations seemed to be independent of flow.展开更多
文摘The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behavior. The toxicity metal is dependent on its chemical form and therefore removal of metal is more meaningful than the estimation of its concentrations. In this study, the batch experiments were carried out under 30℃ to study the effect of pH, initial Cr concentration, adsorbent dose and contact time on the removal of Cr (lII). The maximum adsorption efficiency (99%) was observed when 1.5 g of pond mud was used for removal ofCr (Ⅲ) from test solution containing 150 mg·Cr / 100 ml. The optimal pH and contact time recorded during the study were 6 and 10.0, respectively.
文摘Several studies focused on nutrients have shown that land use and management practices have a strong influence on stream chemistry. Much less is known about the relationship between heavy metal concentrations in stream water and land use. We compared the variability of trace element concentrations in the stream of a catchment exposed to different types of management practices and land use. This is a small catchment with previous agricultural diffuse and accidental pollution mainly due to the spreading of slurry. The agricultural land was reforested in July 1998. The concentrations of Fe, Mn, Cu and Zn in dissolved phase from surface water samples collected at the catchment outlet were determined over a period of approximately six years. The results suggest that dissolved metal concentrations, especially Cu and Mn, are controlled by the land use and management practices. The median concentrations of studied metals were the highest in the agricultural period. It was also during this period when they all presented the highest concentration peaks, coinciding with a time of heavy application of manure to the soil. Dissolved Fe and Mn showed high dependence of flow rate, whereas Cu and Zn concentrations seemed to be independent of flow.