Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-...Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-gravity simulation on objects outside earth for future work, the law of dynamic similarity for detectors was deduced. A new method was proposed for simulating the low-gravity field on the surface of objects outside earth, which was achieved by changing initial conditions of the landing by the probe and by subsequent treatment of experimental data. The prototype tested the limitation of this method was verified. It is shown that the prototypes of detectors can be used in detectors low-gravity simulation test with this method, and equipments are simple and operationally effective. This method can be used for later lunar exploration, and low-gravity simulations on extraterrestrial objects.展开更多
基金National Natural Science Foundation of China under Grant No.00125521the 973 State Key Basic Research and Development Program under Grant No.G2000077400
文摘The double-sine-Gordon equation is studied by means of the so-called mapping method. Some new exact solutions are determined.
基金supported by the National Natural Science Foundation of China(Grant No.51105196)Natural Science Foundation of Jiangsu Province(Grant No.BK2011733)
文摘Herein symmetrical four-legged suspension lunar lander was used as the research object, the six-degree-of-freedom dynamic model was built and the model of the lunar soil friction coefficient was improved. For the low-gravity simulation on objects outside earth for future work, the law of dynamic similarity for detectors was deduced. A new method was proposed for simulating the low-gravity field on the surface of objects outside earth, which was achieved by changing initial conditions of the landing by the probe and by subsequent treatment of experimental data. The prototype tested the limitation of this method was verified. It is shown that the prototypes of detectors can be used in detectors low-gravity simulation test with this method, and equipments are simple and operationally effective. This method can be used for later lunar exploration, and low-gravity simulations on extraterrestrial objects.