Aim The several species of the genus Paris called "Chonglou" are famous traditional Chinese herbal medicines. We established the quantitative analysis method of the steroidal saponins in some species of the genus Pa...Aim The several species of the genus Paris called "Chonglou" are famous traditional Chinese herbal medicines. We established the quantitative analysis method of the steroidal saponins in some species of the genus Paris and discussed their relations. Methods We detected the contents of 11 steroidal saponins in Paris samples with a Kromasel C18 ( 150 mm× 4.6 mm ID, 5μm) column which was subjected to gradient elution with acetonitrile-water (30:70- 60:40, V/V) at a flow rate of 1 mL· min^-1 by HPLC-ELSD and established chemical cluster tree using SPSS 11 software. Results All the samples could be separated and calibration curves of 11 saponins were prepared. We successfully detected the contents of 11 steroidal saponins in 14 Paris spp. in 30 min. The recovery for the assay of saponins was between 95 % and 97 %. The RSD of precision of 11 saponins and stability of samples were below 3 %. Chemical phylogenetic tree based on saponin contents indicated that 17 samples of Paris spp. clustered separately. Conclusion The established method is accurate and convenient, and suitable for the quantitative analysis of these 11 steroidal saponins in Paris spp.. The chemical phylogenetic tree is in accordance with Takhtajian classical taxonomy.展开更多
Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically...Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient.展开更多
On the basis of investigating the statistical data of bus transport networks of three big cities in China,wepropose that each bus route is a clique(maximal complete subgraph)and a bus transport network(BTN)consists of...On the basis of investigating the statistical data of bus transport networks of three big cities in China,wepropose that each bus route is a clique(maximal complete subgraph)and a bus transport network(BTN)consists of alot of cliques,which intensively connect and overlap with each other.We study the network properties,which includethe degree distribution,multiple edges' overlapping time distribution,distribution of the overlap size between any twooverlapping cliques,distribution of the number of cliques that a node belongs to.Naturally,the cliques also constitute anetwork,with the overlapping nodes being their multiple links.We also research its network properties such as degreedistribution,clustering,average path length,and so on.We propose that a BTN has the properties of random cliqueincrement and random overlapping clique,at the same time,a BTN is a small-world network with highly clique-clusteredand highly clique-overlapped.Finally,we introduce a BTN evolution model,whose simulation results agree well withthe statistical laws that emerge in real BTNs.展开更多
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
Heavy metal pollution brings extensive concerns since 1940s. In order to assess the heavy metal pollution on the farmland of Yanzhou coalfield, 216 soil samples and 54 combined samples were collected. Lead, cadmium, c...Heavy metal pollution brings extensive concerns since 1940s. In order to assess the heavy metal pollution on the farmland of Yanzhou coalfield, 216 soil samples and 54 combined samples were collected. Lead, cadmium, chromium, copper, zinc, and nickel contained in both topsoil and deep soil were analyzed using atomic absorbent spectrometry analyzer (AAS). Fuzzy clustering method was used in data processing. And fuzzy synthetic assessment was applied to assess the soil contamination by heavy metals. The result shows that Yanzhou coalfield has been polluted by the heavy metals to some extent.展开更多
Using a tunable clustering coeffcient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For ...Using a tunable clustering coeffcient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For several typical categories of complex networks, the more triangles are in the networks, the worse the synchronizability of the networks is.展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches ...In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.展开更多
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be ...The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results.展开更多
The main task of provenance analysis is to determine the source of sediments and the position of parent rocks.Provenance analysis may find out the relationship between erosion districts and sediment zone,between the u...The main task of provenance analysis is to determine the source of sediments and the position of parent rocks.Provenance analysis may find out the relationship between erosion districts and sediment zone,between the uplift and the depression in the process of basin development.The authors use the method of heavy mineral clustering analysis and estimate the provenance direction of Huanghua Depression in the Paleogene Kong 2 Member.Research shows that there were five provenance areas of Kong 2 Member in Kongnan area.They are western(Shenusi),northwestern(Cangzhou),eastern(Ganhuatun),northeastern and southeastern.The main provenance areas were northwestern and western,while the southern provenance could not be ruled out.And these areas are consistent with the known provenance areas.展开更多
文摘Aim The several species of the genus Paris called "Chonglou" are famous traditional Chinese herbal medicines. We established the quantitative analysis method of the steroidal saponins in some species of the genus Paris and discussed their relations. Methods We detected the contents of 11 steroidal saponins in Paris samples with a Kromasel C18 ( 150 mm× 4.6 mm ID, 5μm) column which was subjected to gradient elution with acetonitrile-water (30:70- 60:40, V/V) at a flow rate of 1 mL· min^-1 by HPLC-ELSD and established chemical cluster tree using SPSS 11 software. Results All the samples could be separated and calibration curves of 11 saponins were prepared. We successfully detected the contents of 11 steroidal saponins in 14 Paris spp. in 30 min. The recovery for the assay of saponins was between 95 % and 97 %. The RSD of precision of 11 saponins and stability of samples were below 3 %. Chemical phylogenetic tree based on saponin contents indicated that 17 samples of Paris spp. clustered separately. Conclusion The established method is accurate and convenient, and suitable for the quantitative analysis of these 11 steroidal saponins in Paris spp.. The chemical phylogenetic tree is in accordance with Takhtajian classical taxonomy.
基金Funded by the National 973 Program of China (No.2003CB415205)the National Natural Science Foundation of China (No.40523005, No.60573183, No.60373019)the Open Research Fund Program of LIESMARS (No.WKL(04)0303).
文摘Spatial objects have two types of attributes: geometrical attributes and non-geometrical attributes, which belong to two different attribute domains (geometrical and non-geometrical domains). Although geometrically scattered in a geometrical domain, spatial objects may be similar to each other in a non-geometrical domain. Most existing clustering algorithms group spatial datasets into different compact regions in a geometrical domain without considering the aspect of a non-geometrical domain. However, many application scenarios require clustering results in which a cluster has not only high proximity in a geometrical domain, but also high similarity in a non-geometrical domain. This means constraints are imposed on the clustering goal from both geometrical and non-geometrical domains simultaneously. Such a clustering problem is called dual clustering. As distributed clustering applications become more and more popular, it is necessary to tackle the dual clustering problem in distributed databases. The DCAD algorithm is proposed to solve this problem. DCAD consists of two levels of clustering: local clustering and global clustering. First, clustering is conducted at each local site with a local clustering algorithm, and the features of local clusters are extracted clustering is obtained based on those features fective and efficient. Second, local features from each site are sent to a central site where global Experiments on both artificial and real spatial datasets show that DCAD is effective and efficient.
基金supported by National Natural Science Foundation of China under Grant Nos.60504027 and 60874080the Postdoctor Science Foundation of China under Grant No.20060401037
文摘On the basis of investigating the statistical data of bus transport networks of three big cities in China,wepropose that each bus route is a clique(maximal complete subgraph)and a bus transport network(BTN)consists of alot of cliques,which intensively connect and overlap with each other.We study the network properties,which includethe degree distribution,multiple edges' overlapping time distribution,distribution of the overlap size between any twooverlapping cliques,distribution of the number of cliques that a node belongs to.Naturally,the cliques also constitute anetwork,with the overlapping nodes being their multiple links.We also research its network properties such as degreedistribution,clustering,average path length,and so on.We propose that a BTN has the properties of random cliqueincrement and random overlapping clique,at the same time,a BTN is a small-world network with highly clique-clusteredand highly clique-overlapped.Finally,we introduce a BTN evolution model,whose simulation results agree well withthe statistical laws that emerge in real BTNs.
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.
基金Project 30302408 supported by Land and Resource Ministry of China
文摘Heavy metal pollution brings extensive concerns since 1940s. In order to assess the heavy metal pollution on the farmland of Yanzhou coalfield, 216 soil samples and 54 combined samples were collected. Lead, cadmium, chromium, copper, zinc, and nickel contained in both topsoil and deep soil were analyzed using atomic absorbent spectrometry analyzer (AAS). Fuzzy clustering method was used in data processing. And fuzzy synthetic assessment was applied to assess the soil contamination by heavy metals. The result shows that Yanzhou coalfield has been polluted by the heavy metals to some extent.
基金The project partly supported by National Natural Science Foundation for Distinguished Young Scholars of China under Grant No. 60225013, National Natural Science Foundation of China under Grants Nos. 70271072, 70431002, and 90412004, and Shanghai RisingStar Program under Grant No.05QMX1436Author (X. Li) also acknowledges the support from the Alexander von Humboldt Foundation.
文摘Using a tunable clustering coeffcient model withoutchanging the degree distribution, we investigate the effect of clustering coefficient on synchronization of networks with both unweighted and weighted couplings. For several typical categories of complex networks, the more triangles are in the networks, the worse the synchronizability of the networks is.
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
文摘In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.
基金National Youth Natural Science Foundationof China(No.61806006)Innovation Program for Graduate of Jiangsu Province(No.KYLX160-781)Project Supported by Jiangsu University Superior Discipline Construction Project。
文摘The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data sets.And aiming at the problem that it cannot be applied to the Internet on a multi-view data set,a multi-view K-multiple-means(MKMM)clustering method is proposed in this paper.The new algorithm introduces view weight parameter,reserves the design of setting multiple subclasses,makes the number of clusters as constraint and obtains clusters by solving optimization problem.The new algorithm is compared with some popular multi-view clustering algorithms.The effectiveness of the new algorithm is proved through the analysis of the experimental results.
基金Supported by Project of Dagang Branch of Petroleum Group Company Ltd,CNPC No TJDG-JZHT-2005-JSFW-0000-00339
文摘The main task of provenance analysis is to determine the source of sediments and the position of parent rocks.Provenance analysis may find out the relationship between erosion districts and sediment zone,between the uplift and the depression in the process of basin development.The authors use the method of heavy mineral clustering analysis and estimate the provenance direction of Huanghua Depression in the Paleogene Kong 2 Member.Research shows that there were five provenance areas of Kong 2 Member in Kongnan area.They are western(Shenusi),northwestern(Cangzhou),eastern(Ganhuatun),northeastern and southeastern.The main provenance areas were northwestern and western,while the southern provenance could not be ruled out.And these areas are consistent with the known provenance areas.