This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identifi...This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identification development follows a transparent image processing paradigm completely independent of state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results indicates a significant potential in reducing the computational task of first passage probabilities estimation, an important feature in the field of e.g., probabilistic seismic design or risk assessment generally.展开更多
An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero v...An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.展开更多
文摘This paper contributes to the structural reliability problem by presenting a novel approach that enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. Identification development follows a transparent image processing paradigm completely independent of state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results indicates a significant potential in reducing the computational task of first passage probabilities estimation, an important feature in the field of e.g., probabilistic seismic design or risk assessment generally.
文摘An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.