期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的环氧合酶-2抑制剂分类模型的构建
1
作者 萧耿苗 穆云萍 +2 位作者 千爱君 李芳红 赵子建 《现代生物医学进展》 CAS 2024年第4期606-611,共6页
目的:构建环氧合酶-2(Cyclooxygenase-2,COX-2)抑制剂分类模型,用以筛选和优化COX-2抑制剂。方法:基于八种机器学习算法构建模型,比较不同模型的预测性能,筛选出最优模型后利用Y随机验证法对其进行测试,最后运用SHAP(Shapley Additive e... 目的:构建环氧合酶-2(Cyclooxygenase-2,COX-2)抑制剂分类模型,用以筛选和优化COX-2抑制剂。方法:基于八种机器学习算法构建模型,比较不同模型的预测性能,筛选出最优模型后利用Y随机验证法对其进行测试,最后运用SHAP(Shapley Additive eXplanation)算法对最优模型进行可解释性分析。结果:八种不同模型的性能比较结果显示,基于随机森林算法建立的模型最优,其预测准确率、平衡准确率、马修斯相关系数、特征曲线下面积和F1分数(分别为0.893、0.825、0.673、0.909和0.933)最高;Y随机验证结果表明最优模型的预测结果并非偶然;此外,通过SHAP算法挖掘出20个最有可能影响COX-2抑制剂活性的结构片段。结论:本研究为新型COX-2抑制剂的开发提供理论依据,可供本领域其他研究人员对先导化合物进行优化或设计更好的COX-2抑制剂。 展开更多
关键词 COX-2抑制剂 机器学习 可解释性 重要结构片段
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部