This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy...This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments.展开更多
The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented fir...The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented first,and the Lagrange multipliers' soution method of problems with multiple constraints is improved by the dual method.Then the iterative formulas of the guide-weight method for topology optimization problems of minimum compliance and minimum weight are derived and coresponding numerical examples are calculated.The results of the examples exhibits that when the guide-weight method is used to solve topology optimization problems with multiple loads,it works very well with simple iterative formulas,and has fast convergence and good solution.After comparison with the results calculated by the SCP method in Ansys,one can conclude that the guide-weight method is an effective method and it provides a new way for solving topology optimization problems.展开更多
基金Supported by National Natural Science Foundation of China (No. 50878066)the National Key Technology R&D Program in the 11th Five-Year Plan of China (No. 2006BAJ01B02)the Key Technologies R&D Program of Heilongjiang Province, China (No. GB02C204)
文摘This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments.
基金supported in part by the National Natural Science Founda-tion of China (Grant No 51075222)the Fund of State Key Laboratory of Tribology (Grant No SKLT10C02)the National Key Scientific and Technological Project (Grant No 2010ZX04004-116)
文摘The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented first,and the Lagrange multipliers' soution method of problems with multiple constraints is improved by the dual method.Then the iterative formulas of the guide-weight method for topology optimization problems of minimum compliance and minimum weight are derived and coresponding numerical examples are calculated.The results of the examples exhibits that when the guide-weight method is used to solve topology optimization problems with multiple loads,it works very well with simple iterative formulas,and has fast convergence and good solution.After comparison with the results calculated by the SCP method in Ansys,one can conclude that the guide-weight method is an effective method and it provides a new way for solving topology optimization problems.