The uptake capacities, and the adsorption kinetics, of copper, Cu(Ⅱ), nickel, Ni(Ⅱ), and cadmium, Cd(Ⅱ), on peat have been studied under static conditions. The results show that the adsorption rates are rapid...The uptake capacities, and the adsorption kinetics, of copper, Cu(Ⅱ), nickel, Ni(Ⅱ), and cadmium, Cd(Ⅱ), on peat have been studied under static conditions. The results show that the adsorption rates are rapid: equilibrium is reached in twenty minutes. The adsorption of copper, nickel and cadmium is pH dependent over the pH range from 2 to 6. The adsorption kinetics can be excellently described by the Elovich kinetic equation. The adsorption isotherm fits a Langmuir model very well. The adsorption capacities follow the order Cu^2+ 〉 Ni^2+〉 Cd^2+ in single-component systems and the competitive adsorption capacities fall in the decreasing order Cu^2+ 〉 Ni^2+〉 Cd^2+ in multi-component systems. The adsorption capacities of these three heavy metal ions on peat are consistent with their observed competitive adsorption capacities.展开更多
Different mathematical methods, including linearization, differential, integration and nonlinear least squares approximation (Newton-Marquardt method), were used to fit different kinetic equations, such as zero-order,...Different mathematical methods, including linearization, differential, integration and nonlinear least squares approximation (Newton-Marquardt method), were used to fit different kinetic equations, such as zero-order, first-order (i. e, membrane diffusion), second-order, parabolic-diffusion, Elovich, two-constant equations, to the experimental data of Pb2+ and Cu2+ adsorption on variable charge soils and kaolinite. Assuming each M2+ occupied two adsorption sites, two more equations, the so-called surface second-order equation and third-order equation were derived and compared with the above equations according to the fitting results, which showed that the second-order equation and surface second-order equation, being one equation in different expressions under some conditions, were better than the other equations in describing the Pb2+ and Cu2+ adsorption kinetics, and the latter was the best.展开更多
In this paper, we describe the synthesis of a novel copper ion hapten using the copper mercaptide of penicillenic acid (CMPA) derived from penicillin. Results from tests with immune rabbits indicate that: (i) A n...In this paper, we describe the synthesis of a novel copper ion hapten using the copper mercaptide of penicillenic acid (CMPA) derived from penicillin. Results from tests with immune rabbits indicate that: (i) A new antigen synthesized with CMPA has good stability and is safe for immunizing animals with no toxic phenomena being found in animal experiments; (ii) the immunogenic antigen (CMPA-BSA) can stimulate the immune system to produce specific antibodies with high titrations, up to 150000; and (iii) antibodies in antisera showed higher affinity to OVA-GSH-CuC1 than OVA-GSH, which indicates that the antibodies have specific affinity towards copper ions. These results confirm that the novel hapten and relevant antigen for copper ion have been successfully synthesized, giving progress towards an immunoassay for copper ions in environmental and food samples.展开更多
基金Project[2006]331 supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China0504 by the Doctoral Initial Foundation of East China University of Technology070712 by the Initial Foundation by Key Laboratory of Nuclear Resources and Environment,Ministry of Education of China
文摘The uptake capacities, and the adsorption kinetics, of copper, Cu(Ⅱ), nickel, Ni(Ⅱ), and cadmium, Cd(Ⅱ), on peat have been studied under static conditions. The results show that the adsorption rates are rapid: equilibrium is reached in twenty minutes. The adsorption of copper, nickel and cadmium is pH dependent over the pH range from 2 to 6. The adsorption kinetics can be excellently described by the Elovich kinetic equation. The adsorption isotherm fits a Langmuir model very well. The adsorption capacities follow the order Cu^2+ 〉 Ni^2+〉 Cd^2+ in single-component systems and the competitive adsorption capacities fall in the decreasing order Cu^2+ 〉 Ni^2+〉 Cd^2+ in multi-component systems. The adsorption capacities of these three heavy metal ions on peat are consistent with their observed competitive adsorption capacities.
基金Project supported by the N ational Natural Science Foundation of China.
文摘Different mathematical methods, including linearization, differential, integration and nonlinear least squares approximation (Newton-Marquardt method), were used to fit different kinetic equations, such as zero-order, first-order (i. e, membrane diffusion), second-order, parabolic-diffusion, Elovich, two-constant equations, to the experimental data of Pb2+ and Cu2+ adsorption on variable charge soils and kaolinite. Assuming each M2+ occupied two adsorption sites, two more equations, the so-called surface second-order equation and third-order equation were derived and compared with the above equations according to the fitting results, which showed that the second-order equation and surface second-order equation, being one equation in different expressions under some conditions, were better than the other equations in describing the Pb2+ and Cu2+ adsorption kinetics, and the latter was the best.
基金supported by the National Natural Science Foundation of China (Grant No. 30821005)National High Technology Research and Development Program of China (Grant No. 2007AA10Z401)
文摘In this paper, we describe the synthesis of a novel copper ion hapten using the copper mercaptide of penicillenic acid (CMPA) derived from penicillin. Results from tests with immune rabbits indicate that: (i) A new antigen synthesized with CMPA has good stability and is safe for immunizing animals with no toxic phenomena being found in animal experiments; (ii) the immunogenic antigen (CMPA-BSA) can stimulate the immune system to produce specific antibodies with high titrations, up to 150000; and (iii) antibodies in antisera showed higher affinity to OVA-GSH-CuC1 than OVA-GSH, which indicates that the antibodies have specific affinity towards copper ions. These results confirm that the novel hapten and relevant antigen for copper ion have been successfully synthesized, giving progress towards an immunoassay for copper ions in environmental and food samples.