[Objective] This study aimed to clarify the effects of Pb2+ and Cr3+ stress on the contents of chlorophyl in Bryum argenteum and Barbula indica. [Method] B. ar-genteum and B. indica were cultured in different concen...[Objective] This study aimed to clarify the effects of Pb2+ and Cr3+ stress on the contents of chlorophyl in Bryum argenteum and Barbula indica. [Method] B. ar-genteum and B. indica were cultured in different concentrations of lead nitrate solu-tion or chromium chloride solution, to investigate the changes in contents of photo-synthetic pigments under lead and chromium single stress. [Result] The results showed that the effects of 1, 10 and 200 mg/L Pb2+ on B. indica were greater than those on B. argenteum; the effects of 1, 50, 100 and 200 mg/L Cr3+ on B. argen-teum were greater than those on B. indica. Total chlorophyl content in B. argen-teum and B. indica under different concentrations of Pb2+ and Cr3+ was decreased compared with that in control. The tolerance of B. indica to Pb2+ pol ution was lower than that of B. argenteum, while the tolerance of B. indica to Cr3+ pol ution was greater than that of B. argenteum. [Conclusion] Based on the conventional require-ments for monitoring materials, B. indica can be used as an indicator species to monitor heavy metal pol ution in the atmosphere of Zhengzhou.展开更多
This study investigated the distribution of six pollutant elements(Cr, Cu, Pb, Zn, Cd, and As), and their relationship to soil organic carbon(SOC) in five soil profiles in the Puding area. Results show SOC content dec...This study investigated the distribution of six pollutant elements(Cr, Cu, Pb, Zn, Cd, and As), and their relationship to soil organic carbon(SOC) in five soil profiles in the Puding area. Results show SOC content decreased exponentially to the depth of soil profiles; the vertical distribution patterns of SOC in soil profiles were partially controlled by land use. The concentrations of these pollutant elements in most soils were lower than background values, indicating that the local soil was less likely to be contaminated by foreign inputs. Geo-accumulation index values of these elements in most soil samples were less than 1, suggesting that the soil of this area may not be polluted. The concentrations of Cr, Cu, As, and Zn in soils from all land use types were significantly negatively correlated with SOC contents. Geochemical approaches confirmed that the soil of this area was less influenced by pollutant elements.展开更多
Study of plant roots and the diversity of soil micro biota, such as bacteria, fungi and microfauna associated with them, is important for understanding the ecological complexities between diverse plants, microbes, soi...Study of plant roots and the diversity of soil micro biota, such as bacteria, fungi and microfauna associated with them, is important for understanding the ecological complexities between diverse plants, microbes, soil and climates and their role in phytoremediation of contaminated soils. The arbuscular mycorrhizal fungi (AMF) are universal and ubiquitous rhizosphere mi-croflora forming symbiosis with plant roots and acting as biofertilizers, bioprotactants, and biodegraders. In addition to AMF, soils also contain various antagonistic and beneficial bacteria such as root pathogens, plant growth promoting rhizobacteria including free-living and symbiotic N-fixers, and mycorrhiza helping bacteria. Their potential role in phytoremediation of heavy metal (HM) contaminated soils and water is becoming evident although there is need to completely understand the ecological complexities of the plant-microbe-soil interactions and their better exploitation as consortia in remediation strategies employed for contaminated soils. These multitrophic root microbial associations deserve multi-disciplinary investigations using molecular, biochemical, and physiological techniques. Ecosystem restoration of heavy metal contaminated soils practices need to incorporate microbial bio-technology research and development. This review highlights the ecological complexity and diversity of plant-microbe-soil combinations, particularly AM and provides an overview on the recent developments in this area. It also discusses the role AMF play in phytorestoration of HM contaminated soils, i.e. mycorrhizoremediation.展开更多
Hyperaccumulators concentrate trace metals and heavy metals in their shoots when grown in metal-contaminated soils and these trace metal-loaded plants may be removed by harvesting the fields. Studies exploring the ben...Hyperaccumulators concentrate trace metals and heavy metals in their shoots when grown in metal-contaminated soils and these trace metal-loaded plants may be removed by harvesting the fields. Studies exploring the beneficial role of these hyperaccumulators to clean up the environment have led to the development of phytoextraction. The success of phytoextraction depends upon the high biomass of plant species and bioavailability of metals for plant uptake. The phytoavailability of metals is influenced by soil- associated factors, such as pH, redox potential, cation exchange capacity, soil type, and soil texture, and by plant-associated factors, such as root exudates and root rhizosphere processes (microorganisms). Efficiency of phytoextraction can be improved by advanced agronomic practices including soil and crop management by application of genetic engineering to enhance the metal tolerance, shoot translocation, accumulation, and sequestration and by application of chelate treatments to enhance metal bioavailability. Application of microorganisms including bacteria and mycorrhiza may facilitate the phytoextraction application at commercially large scale.展开更多
基金Supported by Science and Technology Supporting Project of Henan Province(132300410358)~~
文摘[Objective] This study aimed to clarify the effects of Pb2+ and Cr3+ stress on the contents of chlorophyl in Bryum argenteum and Barbula indica. [Method] B. ar-genteum and B. indica were cultured in different concentrations of lead nitrate solu-tion or chromium chloride solution, to investigate the changes in contents of photo-synthetic pigments under lead and chromium single stress. [Result] The results showed that the effects of 1, 10 and 200 mg/L Pb2+ on B. indica were greater than those on B. argenteum; the effects of 1, 50, 100 and 200 mg/L Cr3+ on B. argen-teum were greater than those on B. indica. Total chlorophyl content in B. argen-teum and B. indica under different concentrations of Pb2+ and Cr3+ was decreased compared with that in control. The tolerance of B. indica to Pb2+ pol ution was lower than that of B. argenteum, while the tolerance of B. indica to Cr3+ pol ution was greater than that of B. argenteum. [Conclusion] Based on the conventional require-ments for monitoring materials, B. indica can be used as an indicator species to monitor heavy metal pol ution in the atmosphere of Zhengzhou.
基金supported by the National Natural Science Foundation of China(Grant Nos.4132501041403109)National Key Basic Research Program of China(Grant No.2013CB956703)
文摘This study investigated the distribution of six pollutant elements(Cr, Cu, Pb, Zn, Cd, and As), and their relationship to soil organic carbon(SOC) in five soil profiles in the Puding area. Results show SOC content decreased exponentially to the depth of soil profiles; the vertical distribution patterns of SOC in soil profiles were partially controlled by land use. The concentrations of these pollutant elements in most soils were lower than background values, indicating that the local soil was less likely to be contaminated by foreign inputs. Geo-accumulation index values of these elements in most soil samples were less than 1, suggesting that the soil of this area may not be polluted. The concentrations of Cr, Cu, As, and Zn in soils from all land use types were significantly negatively correlated with SOC contents. Geochemical approaches confirmed that the soil of this area was less influenced by pollutant elements.
文摘Study of plant roots and the diversity of soil micro biota, such as bacteria, fungi and microfauna associated with them, is important for understanding the ecological complexities between diverse plants, microbes, soil and climates and their role in phytoremediation of contaminated soils. The arbuscular mycorrhizal fungi (AMF) are universal and ubiquitous rhizosphere mi-croflora forming symbiosis with plant roots and acting as biofertilizers, bioprotactants, and biodegraders. In addition to AMF, soils also contain various antagonistic and beneficial bacteria such as root pathogens, plant growth promoting rhizobacteria including free-living and symbiotic N-fixers, and mycorrhiza helping bacteria. Their potential role in phytoremediation of heavy metal (HM) contaminated soils and water is becoming evident although there is need to completely understand the ecological complexities of the plant-microbe-soil interactions and their better exploitation as consortia in remediation strategies employed for contaminated soils. These multitrophic root microbial associations deserve multi-disciplinary investigations using molecular, biochemical, and physiological techniques. Ecosystem restoration of heavy metal contaminated soils practices need to incorporate microbial bio-technology research and development. This review highlights the ecological complexity and diversity of plant-microbe-soil combinations, particularly AM and provides an overview on the recent developments in this area. It also discusses the role AMF play in phytorestoration of HM contaminated soils, i.e. mycorrhizoremediation.
文摘Hyperaccumulators concentrate trace metals and heavy metals in their shoots when grown in metal-contaminated soils and these trace metal-loaded plants may be removed by harvesting the fields. Studies exploring the beneficial role of these hyperaccumulators to clean up the environment have led to the development of phytoextraction. The success of phytoextraction depends upon the high biomass of plant species and bioavailability of metals for plant uptake. The phytoavailability of metals is influenced by soil- associated factors, such as pH, redox potential, cation exchange capacity, soil type, and soil texture, and by plant-associated factors, such as root exudates and root rhizosphere processes (microorganisms). Efficiency of phytoextraction can be improved by advanced agronomic practices including soil and crop management by application of genetic engineering to enhance the metal tolerance, shoot translocation, accumulation, and sequestration and by application of chelate treatments to enhance metal bioavailability. Application of microorganisms including bacteria and mycorrhiza may facilitate the phytoextraction application at commercially large scale.