[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contam...[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.展开更多
Totally 24 arbor tree species and 6 shrub species were measured on their absorption capacities to heavy metal Pb, Cd, Cr, and Hg by collecting and analyzing the leaves of trees along different streets in Harbin city i...Totally 24 arbor tree species and 6 shrub species were measured on their absorption capacities to heavy metal Pb, Cd, Cr, and Hg by collecting and analyzing the leaves of trees along different streets in Harbin city in Sept. to Oct. of 2003. The results showed that all the measured species had certain absorbency to the pollutants (Pb, Cd, Cr and Hg), but there existed significant difference in absorption capacity for different species to different pollutants. The measured tree species were classified into three categories by their absorption quantum of heavy metal pollutants. Among the species measured,Betula platyphylla, Ulmus pumila var.pendula, andPrunus persicaf.rubro-plena had high capacity in absorbing Pb;Populus xiahei, P. nigra var.Italica, P. alba x P. berolinensis andSalix matsudana had had high capacity in absorbing Cd;Phellodendron amurense, Syringa oblata, Salix matsudana, Pinus tabulaeformis var.mukdensis, Picea koraiensis, Prunus persica f.rubro-plena, P. triloba andAcer negundo, etc. had high capacity in absorption of Cr;Prunus triloba, Quercus mongolica, Salix matsudana, Sambucus williamsii, Pyrus ussuuriensis andSpiraea fritschiana were good at absorption of Hg. This study might offer scientific foundation for selection of urban afforestation species in different polluted conditions caused by heavy metals. Keywords Greening tree species - Heavy metal - Pollutants - Plumbum - Cadmium - Chromium - Mercury - Absorptivity CLC number S731.2 - X501 Document code A Foundation item: This study is financially supported by the Special Programme for Agriculture under Ministry of Chinese Science and Technology (No. 2002BA516A15-01).Biography: MU Li-qiang (1966-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong展开更多
There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from s...There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.展开更多
A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and ...A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and Zn polluted acid soil in the southern part of China.The growth of pakchoi was apparently improved by lime and calcium magnesium phosphate application,the uptake of Cd, Pb, Cu and Zn by pakchoi was significantly depressed and the symptom caused byheavy metals pollution was eliminated. Meanwhile, the absorption of N, K and Mn was also inhibitedby these amendments. Soil pH was the main factor controlling the uptake of the heavy metals bypakchoi. This suggests that lime and calcium magnesium phosphate could be used as effectiveamendments for eliminating the toxicity of heavy metals to the vegetable and inhibiting theirabsorption by the crop.展开更多
In the light of the national policy of fallow, this study was conducted to determine how the different water management and lime application would affect soil physical and chemical properties, rice yield and cadmium ...In the light of the national policy of fallow, this study was conducted to determine how the different water management and lime application would affect soil physical and chemical properties, rice yield and cadmium (Cd) content of rice in fallow season. The results showed that, compared with the arid fallow, the waterlogging fallow decreased the soil pH value whereas signifcantly increased the soil organic matter content and the cation exchange quantity, and reduced the soil effective cadmium content and the rice cadmium content whereas could increase the rice yield to a certain extent. In the fooded fallow or the dry fallow, the application of lime mainly depended on the alkali conditioning of lime and the antagonistic effect of Ca2+, which could signifcantly reduce the cadmium content of rice, and its effect would increase linearly with the increase of lime dosage, whereas had no significant effect on soil organic matter content and cation exchange quantity. In order to establish a linear equation of lime dosage and related indexes under the condition of waterlogging fallow or dry fallow, calculations showed that each application of lime at 1 000 kg/hm2 or kg/hmss2 could improve soil pH value by 0.238 2 or 0.246 5units respectively, and reduce the effective Cd content to 0.007 5 mg/kg both in the arid fallow and the waterlogging fallow conditions. The lime theoretic application rate for the lowest Cd content of late rice in the arid fallow was 5 120 kg/hm2, and the minimum limit of the Cd content in rice was 0.124 2 mg/kg; and the lime theoretic application rate for the highest yield of late rice in the submerged water fallow was 4 636 kg/hm2, the minimum theoretic Cd content in rice is 0.100 7 mg/kg, and it could reduce the Cd content in rice under the condition of submerged fallow and decrease the dosage of lime.展开更多
The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A la...The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A laboratory experiment was performed to study the effects of combined pollution of Cu, Ph, Zn and Cd on soil K status as indicated by chemical fractions, adsorption-desorption and quantity/intensity (Q/I) relationship of K in a Typic Udic Ferrisol (generally called red soil), by employing uniform design and single factor design. Compared to the control, content of exchangeable K was decreased, but that of soluble K increased in the samples contaminated with heavy metals. Due to heavy metal pollution, potassium adsorption was reduced by 5% to 22%, whereas the desorption percentage of adsorbed K increased by 2% to 32%. The Q/I curves shifted downward, potassium buffering capacity (PBCK) decreased, and equilibrium activity ratio values (ARoK) increased with increasing heavy metal pollution. These influences followed the sequences of Ph>Cu>Zn and combined pollution>single one. Displacement of K from canon exchange sites and decrease in soil CEC due to heavy metals should be responsible for the changes of soil K behaviours. The findings suggest that heavy metal pollution of soil might aggravate the degradation of soil K fertility by decreasing K adsorption and buffering capacity and increasing desorption.展开更多
Experiments were designed to expose the filter-feeding bivalve Perna viridis to different Cd-contaminated water environments in order to compare the different pathways through which Cd is accumulated. Results show tha...Experiments were designed to expose the filter-feeding bivalve Perna viridis to different Cd-contaminated water environments in order to compare the different pathways through which Cd is accumulated. Results show that mussels can accumulate Cd through seawater, food, sediment and suspended particle pathways in a short period of time. Mussels' uptake of Cd through the seawater pathway reaches the highest concentration approximately 3 and 9 times larger than through the algae and sediment pathways respectively after 7 d. This indicates that the Cd-accumulation through seawater is most efficient. Results also indicate that the uptake directly through contaminated algae, particles or sediments ingested by mussels is less important when compared with the uptake of Cd by mussels through the seawater pathway. Metal uptake pathways and mechanisms of bioaccumulation by marine bivalve are also discussed in this paper.展开更多
A study was conducted to examine the effect of heavy metals (Cu,Pb, Zn and Cd in combination or alone) on the equilibrium andkinetics of phosphorus (P) retention in typic udic ferrisols by usingboth equilibrium and fl...A study was conducted to examine the effect of heavy metals (Cu,Pb, Zn and Cd in combination or alone) on the equilibrium andkinetics of phosphorus (P) retention in typic udic ferrisols by usingboth equilibrium and flow techniques. Fourteen soil samples withvarying artificial contamination of Cu, Pb, Zn and Cd were prepared.Heavy metal pollution led to increases in retention capacity andmaximum buffering capacity (MBC) of soil P. The rate of P retentionwas also increased and the time to reach equilibrium was advanced byheavy metals addition.展开更多
A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contamin...A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.展开更多
A field experiment was conducted to evaluate the remediation effects of 14 soil conditioners for Cd-polluted paddy fields contrasted with conventional fertilization and liming.The results showed that soil conditioners...A field experiment was conducted to evaluate the remediation effects of 14 soil conditioners for Cd-polluted paddy fields contrasted with conventional fertilization and liming.The results showed that soil conditioners had no significant impact on rice yields.Though the soil conditioners had stable effects on decreasing the Cd content in grains,the effects varied with the category of conditioners.In general,The Cd contents of early rice and late rice were reduced by 22.65%~44.24%and 15.20%~63.03%,respectively.Additionally,the stem and leaves showed the same decreasing tendency.Cluster analysis suggested that soil conditioners can be divided into three categories:the first category increases the soil pH to inhibit the Cd activity and cut down the Cd translocation from soil to stem and leaves,which is most efficient in the reduction of Cd content in rice grains;the other category relies on the antagonism or co-precipitation between Cd and certain elements to inhibit the translocation and redistribution of Cd from rice stems to grains,providing a common effect on Cd reduction;the last category can be seen as a combination of the former two categories from the perspective of its functional mechanism and it has a moderate effect on the reduction of Cd contents in rice grains.展开更多
The distribution characteristics of heavy metals in soil-root systems have great significance for the research into soil pollution risk assessment and the phytoremediation effect. This paper takes ligustrum lucidum as...The distribution characteristics of heavy metals in soil-root systems have great significance for the research into soil pollution risk assessment and the phytoremediation effect. This paper takes ligustrum lucidum as an example, based on the characteristics of adsorption of heavy metals in soil by woody plants, lays out sampling points, and using software Surer for the Kiging interpolation analysis, and the horizontal migration law of heavy metal cadmium in the soil-root interface system is simulated. Through multi-model statistical regression trend analysis, the horizontal migration mechanism of cadmium in different sections is discussed. The results show that: (1) under horizontal migration law: the migration ability of Cd is weaker near the Ligustrum lucidum root (0 30 cm); with the root extension, the migration ability of Cd gradually is strengthened, and the main range of the migration ability is 60-90 cm. In addition, its migration law follows the cubic curve mode. (2) under longitudinal migration law: based on the Kriging method, migration models Z(hi) of heavy metal Cd in any depth of hi are constructed and fit the correlation coefficient R^2〉0.95.展开更多
Soil contamination by heavy metals is a serious environmental problem worldwide, and reduction of heavy metal accumulation in vegetables grown on contaminated land is a matter of urgency. A pot experiment was conducte...Soil contamination by heavy metals is a serious environmental problem worldwide, and reduction of heavy metal accumulation in vegetables grown on contaminated land is a matter of urgency. A pot experiment was conducted to study the effects of intercropping with the Cd hyperaccumulators Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions, Ya'an and Chengdu, Sichuan Province, China, on the growth and cadmium (Cd) uptake of eggplant (Solanum melongena L.). The biomass, photosynthetic pigment contents, and activities of antioxidant enzymes of eggplant were enhanced by intercropping. The biomass of eggplant was the highest after intercropping with S. photeinocarpum from Ya'an, but did not differ significantly from that after intercropping with S. nigrum from Chengdu. The shoot Cd content of eggplant was significantly reduced by intercropping with the hyperaccumulators, which ranked as follows: S. nigrum from Chengdu 〉 S. nigrum from Ya'an 〉 S. photeinocarpum from Chengdu 〉 S. photeinocarpum from Ya'an, with the decreases being 19.60%, 14.36%, 9.66%, and 6.42%, respectively, as compared with the control. The lowest shoot Cd content and translocation factor of eggplant were attained after intercropping with S. nigvum from Chengdu. Therefore, it was feasible to intercrop eggplant with S. nigrum and S. photeinocarpurn on Cd-contaminated soil.展开更多
Cadmium(Cd) contamination has posed an increasing challenge to environmental quality and food security. In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmental...Cadmium(Cd) contamination has posed an increasing challenge to environmental quality and food security. In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmentally friendly, especially the use of metal-hyperaccumulating plants to extract or mine heavy metals from polluted soils. Under Cd stress, responses of hyperaccumulator and non-hyperaccumulator plants differ in morphological responses and physiological processes such as photosynthesis and respiration,uptake, transport, and assimilation of minerals and nitrogen, and water uptake and transport, which contribute to their ability to accumulate and detoxify Cd. This review aims to provide a brief overview of the recent progresses in the differential responses of hyperaccumulator and non-accumulator plants to Cd toxicity in terms of growth and physiological processes. Such information might be useful in developing phytoremediation technology for contaminated soils.展开更多
A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from r...A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from roots to different plant parts in a representative vegetable production area in the Baguazhou Island, a suburb of Nanjing City, East China. The arithmetic mean values of total Cd, Cr,Cu, Ni, Pb, and Zn concentrations in the soils were 0.314, 133, 41.0, 58.0, 31.8, and 114 mg kg-1, respectively. All of these values were above the topsoil background values in the Nanjing area. Multivariate and geostatistical analyses showed that soil Cd contamination was derived mainly from agricultural practices. In contrast, Cu and Zn were derived mainly from soil parent materials and Pb from atmospheric deposition from highway gasoline stations. Artemisia selengensis, a locally important specialty vegetable, accumulated heavy metals primarily in the edible leaves. The general distribution of heavy metal concentrations in this plant species showed that the highest occurred in the leaves, intermediate in the stems and lowest in the roots. Cd had the highest concentration factor(root-to-soil ratio) and may pose increased health risks in the future to the local population through the consumption of contaminated vegetables.展开更多
基金Supported by the National Natural Science Foundation of China(50874046)the National High-tech Research and Develop Program of China(863 Program)(2010AA065203)the Science and Technology Project of Education Bureau of Hunan Province,China(08A032)~~
文摘[Objective] To study the remediation efficiency of red mud on Pb, Zn and Cd in the heavy metal contaminated paddy soil of mine area, to clarify its remediation mechanism and fertilizer efficiency on heavy metal contaminated soil. [Method] The soil incubation experiment was conducted to study the effect of red mud on the pH values and electrical conductivity (EC), and the remediation efficiency of red mud on lead (Pb), zinc (Zn) and cadmium (Cd) in heavy metal contaminated soil. [Result] Red mud addition reduced the content of exchangeable Pb, Zn and Cd in the soil significantly. Compared with the control, when incubated for 30, 60 and 90 d with the red mud dosage of 4% (W/W), the exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%; exchangeable Zn content was decreased by 49.26%, 57.32% and 47.16%; and exchangeable Cd content was decreased by 19.53%, 24.06% and 25.70%, respectively. The application of red mud had significant impact on the share of Pb, Zn and Cd contents in five forms, and different amounts of red mud application all reduced the proportion of exchangeable Pb, Zn and Cd to the total Pb, Zn and Cd. In addition, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud addition. [Conclusion] The study provided references for reasonable application of red mud and reduction of heavy metal pollution in paddy soil.
基金Financially supported by the Special Pro-gramme for Agriculture under Ministry of Chinese Science and Technology (No. 2002BA516A15-01).
文摘Totally 24 arbor tree species and 6 shrub species were measured on their absorption capacities to heavy metal Pb, Cd, Cr, and Hg by collecting and analyzing the leaves of trees along different streets in Harbin city in Sept. to Oct. of 2003. The results showed that all the measured species had certain absorbency to the pollutants (Pb, Cd, Cr and Hg), but there existed significant difference in absorption capacity for different species to different pollutants. The measured tree species were classified into three categories by their absorption quantum of heavy metal pollutants. Among the species measured,Betula platyphylla, Ulmus pumila var.pendula, andPrunus persicaf.rubro-plena had high capacity in absorbing Pb;Populus xiahei, P. nigra var.Italica, P. alba x P. berolinensis andSalix matsudana had had high capacity in absorbing Cd;Phellodendron amurense, Syringa oblata, Salix matsudana, Pinus tabulaeformis var.mukdensis, Picea koraiensis, Prunus persica f.rubro-plena, P. triloba andAcer negundo, etc. had high capacity in absorption of Cr;Prunus triloba, Quercus mongolica, Salix matsudana, Sambucus williamsii, Pyrus ussuuriensis andSpiraea fritschiana were good at absorption of Hg. This study might offer scientific foundation for selection of urban afforestation species in different polluted conditions caused by heavy metals. Keywords Greening tree species - Heavy metal - Pollutants - Plumbum - Cadmium - Chromium - Mercury - Absorptivity CLC number S731.2 - X501 Document code A Foundation item: This study is financially supported by the Special Programme for Agriculture under Ministry of Chinese Science and Technology (No. 2002BA516A15-01).Biography: MU Li-qiang (1966-), female, Associate professor in Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) and the National Natural Science Foundation (No. 40201026).
文摘There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.
基金the National Natural Science Foundation of China(No.49671048) the Education Department of Fujian Province,China(No.K98025).
文摘A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and Zn polluted acid soil in the southern part of China.The growth of pakchoi was apparently improved by lime and calcium magnesium phosphate application,the uptake of Cd, Pb, Cu and Zn by pakchoi was significantly depressed and the symptom caused byheavy metals pollution was eliminated. Meanwhile, the absorption of N, K and Mn was also inhibitedby these amendments. Soil pH was the main factor controlling the uptake of the heavy metals bypakchoi. This suggests that lime and calcium magnesium phosphate could be used as effectiveamendments for eliminating the toxicity of heavy metals to the vegetable and inhibiting theirabsorption by the crop.
文摘In the light of the national policy of fallow, this study was conducted to determine how the different water management and lime application would affect soil physical and chemical properties, rice yield and cadmium (Cd) content of rice in fallow season. The results showed that, compared with the arid fallow, the waterlogging fallow decreased the soil pH value whereas signifcantly increased the soil organic matter content and the cation exchange quantity, and reduced the soil effective cadmium content and the rice cadmium content whereas could increase the rice yield to a certain extent. In the fooded fallow or the dry fallow, the application of lime mainly depended on the alkali conditioning of lime and the antagonistic effect of Ca2+, which could signifcantly reduce the cadmium content of rice, and its effect would increase linearly with the increase of lime dosage, whereas had no significant effect on soil organic matter content and cation exchange quantity. In order to establish a linear equation of lime dosage and related indexes under the condition of waterlogging fallow or dry fallow, calculations showed that each application of lime at 1 000 kg/hm2 or kg/hmss2 could improve soil pH value by 0.238 2 or 0.246 5units respectively, and reduce the effective Cd content to 0.007 5 mg/kg both in the arid fallow and the waterlogging fallow conditions. The lime theoretic application rate for the lowest Cd content of late rice in the arid fallow was 5 120 kg/hm2, and the minimum limit of the Cd content in rice was 0.124 2 mg/kg; and the lime theoretic application rate for the highest yield of late rice in the submerged water fallow was 4 636 kg/hm2, the minimum theoretic Cd content in rice is 0.100 7 mg/kg, and it could reduce the Cd content in rice under the condition of submerged fallow and decrease the dosage of lime.
基金Project supported by the National Natural Science Foundation of China (Nos. 49631010 and 49771048),China Postdoctor Science Foun
文摘The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A laboratory experiment was performed to study the effects of combined pollution of Cu, Ph, Zn and Cd on soil K status as indicated by chemical fractions, adsorption-desorption and quantity/intensity (Q/I) relationship of K in a Typic Udic Ferrisol (generally called red soil), by employing uniform design and single factor design. Compared to the control, content of exchangeable K was decreased, but that of soluble K increased in the samples contaminated with heavy metals. Due to heavy metal pollution, potassium adsorption was reduced by 5% to 22%, whereas the desorption percentage of adsorbed K increased by 2% to 32%. The Q/I curves shifted downward, potassium buffering capacity (PBCK) decreased, and equilibrium activity ratio values (ARoK) increased with increasing heavy metal pollution. These influences followed the sequences of Ph>Cu>Zn and combined pollution>single one. Displacement of K from canon exchange sites and decrease in soil CEC due to heavy metals should be responsible for the changes of soil K behaviours. The findings suggest that heavy metal pollution of soil might aggravate the degradation of soil K fertility by decreasing K adsorption and buffering capacity and increasing desorption.
文摘Experiments were designed to expose the filter-feeding bivalve Perna viridis to different Cd-contaminated water environments in order to compare the different pathways through which Cd is accumulated. Results show that mussels can accumulate Cd through seawater, food, sediment and suspended particle pathways in a short period of time. Mussels' uptake of Cd through the seawater pathway reaches the highest concentration approximately 3 and 9 times larger than through the algae and sediment pathways respectively after 7 d. This indicates that the Cd-accumulation through seawater is most efficient. Results also indicate that the uptake directly through contaminated algae, particles or sediments ingested by mussels is less important when compared with the uptake of Cd by mussels through the seawater pathway. Metal uptake pathways and mechanisms of bioaccumulation by marine bivalve are also discussed in this paper.
基金Project jointly supported by the National Natural Science Foundation of China (No. 49771048) and theLaboratory of Material Cyc
文摘A study was conducted to examine the effect of heavy metals (Cu,Pb, Zn and Cd in combination or alone) on the equilibrium andkinetics of phosphorus (P) retention in typic udic ferrisols by usingboth equilibrium and flow techniques. Fourteen soil samples withvarying artificial contamination of Cu, Pb, Zn and Cd were prepared.Heavy metal pollution led to increases in retention capacity andmaximum buffering capacity (MBC) of soil P. The rate of P retentionwas also increased and the time to reach equilibrium was advanced byheavy metals addition.
基金Project(20507022) supported by the National Natural Science Foundation of China
文摘A greenhouse experiment was conducted to elucidate the growth changes and tissues anatomical characteristics of giant reed(Arundo donax L.),a perennial rhizomatous grass,which was cultivated for 70 d in soils contaminated with As,Cd and Pb.The results show that giant reed rapidly grows with big biomass of shoots in contaminated soil,possessing strong metal-tolerance with limited metal translocation from roots to shoots.When As,Cd and Pb concentrations in the soil are less than 254,76.1 and 1 552 mg/kg,respectively,plant height and dried biomass are slightly reduced,the accumulation of As,Cd and Pb in shoots of giant reed is low while metal concentration in roots is high,and the anatomical characteristics of stem tissues are thick and homogeneous according to SEM images.However,plant height and dried biomass are significantly reduced and metal concentration in plant shoots and roots are significantly increased(P<0.05),the stems images become heterogeneous and the secretion in vascular bundles increases significantly when As,Cd and Pb concentrations in the soil exceed 334,101 and 2 052 mg/kg,respectively.The giant reed is a promising,naturally occurring plant with strong metal-tolerance,which can be cultivated in soils contaminated with multiple metals for ecoremediation purposes.
基金Supported by Specialized Scientific Research in Public Welfare Sector Water Resources Ministry(201501019)Scientific and Technological Innovation Project in Hunan Academy of Agricultural Sciences(2017JC57)+1 种基金Science and Technology Planning Project in Changsha(kq1703010)Post Scientist of Rice Industrial System in China(CARS-01-28)~~
文摘A field experiment was conducted to evaluate the remediation effects of 14 soil conditioners for Cd-polluted paddy fields contrasted with conventional fertilization and liming.The results showed that soil conditioners had no significant impact on rice yields.Though the soil conditioners had stable effects on decreasing the Cd content in grains,the effects varied with the category of conditioners.In general,The Cd contents of early rice and late rice were reduced by 22.65%~44.24%and 15.20%~63.03%,respectively.Additionally,the stem and leaves showed the same decreasing tendency.Cluster analysis suggested that soil conditioners can be divided into three categories:the first category increases the soil pH to inhibit the Cd activity and cut down the Cd translocation from soil to stem and leaves,which is most efficient in the reduction of Cd content in rice grains;the other category relies on the antagonism or co-precipitation between Cd and certain elements to inhibit the translocation and redistribution of Cd from rice stems to grains,providing a common effect on Cd reduction;the last category can be seen as a combination of the former two categories from the perspective of its functional mechanism and it has a moderate effect on the reduction of Cd contents in rice grains.
文摘The distribution characteristics of heavy metals in soil-root systems have great significance for the research into soil pollution risk assessment and the phytoremediation effect. This paper takes ligustrum lucidum as an example, based on the characteristics of adsorption of heavy metals in soil by woody plants, lays out sampling points, and using software Surer for the Kiging interpolation analysis, and the horizontal migration law of heavy metal cadmium in the soil-root interface system is simulated. Through multi-model statistical regression trend analysis, the horizontal migration mechanism of cadmium in different sections is discussed. The results show that: (1) under horizontal migration law: the migration ability of Cd is weaker near the Ligustrum lucidum root (0 30 cm); with the root extension, the migration ability of Cd gradually is strengthened, and the main range of the migration ability is 60-90 cm. In addition, its migration law follows the cubic curve mode. (2) under longitudinal migration law: based on the Kriging method, migration models Z(hi) of heavy metal Cd in any depth of hi are constructed and fit the correlation coefficient R^2〉0.95.
基金supported by the Scientific Research Fund of Sichuan Provincial Education Department, China (No. 15ZA0011)the Scientific Research Fund of Sichuan Tobacco Monopoly Administration, China (No. SCYC201504)the Program for Creative Group Construction in "211 Project" of Sichuan Agricultural University, China
文摘Soil contamination by heavy metals is a serious environmental problem worldwide, and reduction of heavy metal accumulation in vegetables grown on contaminated land is a matter of urgency. A pot experiment was conducted to study the effects of intercropping with the Cd hyperaccumulators Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions, Ya'an and Chengdu, Sichuan Province, China, on the growth and cadmium (Cd) uptake of eggplant (Solanum melongena L.). The biomass, photosynthetic pigment contents, and activities of antioxidant enzymes of eggplant were enhanced by intercropping. The biomass of eggplant was the highest after intercropping with S. photeinocarpum from Ya'an, but did not differ significantly from that after intercropping with S. nigrum from Chengdu. The shoot Cd content of eggplant was significantly reduced by intercropping with the hyperaccumulators, which ranked as follows: S. nigrum from Chengdu 〉 S. nigrum from Ya'an 〉 S. photeinocarpum from Chengdu 〉 S. photeinocarpum from Ya'an, with the decreases being 19.60%, 14.36%, 9.66%, and 6.42%, respectively, as compared with the control. The lowest shoot Cd content and translocation factor of eggplant were attained after intercropping with S. nigvum from Chengdu. Therefore, it was feasible to intercrop eggplant with S. nigrum and S. photeinocarpurn on Cd-contaminated soil.
基金supported by the National Natural Science Foundation of China (No. 41501521)a scholarship from the University of Florida, USA
文摘Cadmium(Cd) contamination has posed an increasing challenge to environmental quality and food security. In recent years,phytoremediation has been particularly scrutinized because it is cost-effective and environmentally friendly, especially the use of metal-hyperaccumulating plants to extract or mine heavy metals from polluted soils. Under Cd stress, responses of hyperaccumulator and non-hyperaccumulator plants differ in morphological responses and physiological processes such as photosynthesis and respiration,uptake, transport, and assimilation of minerals and nitrogen, and water uptake and transport, which contribute to their ability to accumulate and detoxify Cd. This review aims to provide a brief overview of the recent progresses in the differential responses of hyperaccumulator and non-accumulator plants to Cd toxicity in terms of growth and physiological processes. Such information might be useful in developing phytoremediation technology for contaminated soils.
基金supported by the National High Technology Research and Development Program (863 Program) of China (No. 2012AA101402-2)
文摘A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from roots to different plant parts in a representative vegetable production area in the Baguazhou Island, a suburb of Nanjing City, East China. The arithmetic mean values of total Cd, Cr,Cu, Ni, Pb, and Zn concentrations in the soils were 0.314, 133, 41.0, 58.0, 31.8, and 114 mg kg-1, respectively. All of these values were above the topsoil background values in the Nanjing area. Multivariate and geostatistical analyses showed that soil Cd contamination was derived mainly from agricultural practices. In contrast, Cu and Zn were derived mainly from soil parent materials and Pb from atmospheric deposition from highway gasoline stations. Artemisia selengensis, a locally important specialty vegetable, accumulated heavy metals primarily in the edible leaves. The general distribution of heavy metal concentrations in this plant species showed that the highest occurred in the leaves, intermediate in the stems and lowest in the roots. Cd had the highest concentration factor(root-to-soil ratio) and may pose increased health risks in the future to the local population through the consumption of contaminated vegetables.