In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannog be directly applied ...In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannog be directly applied to gauge theory of gravity. In gauge theory of gravity, based on the viewpoint of the coupling between the spin and gravitational field, an equation of motlon of the spin is deduced. In the post Newtonian approximation, it is proved that this equation gives the same result as that of the equation of parallel transport. So, in the post Newtonian approximation, gauge theory of gravity gives out the same prediction on the precession of orbiting gyroscope as that of general relativity.展开更多
文摘In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannog be directly applied to gauge theory of gravity. In gauge theory of gravity, based on the viewpoint of the coupling between the spin and gravitational field, an equation of motlon of the spin is deduced. In the post Newtonian approximation, it is proved that this equation gives the same result as that of the equation of parallel transport. So, in the post Newtonian approximation, gauge theory of gravity gives out the same prediction on the precession of orbiting gyroscope as that of general relativity.