In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the res...An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.展开更多
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Supported by National Natural Science Foundation of China (No.60532020,60301008,60472077,50337020), the High Tech-nique Research and Development Program of China (No.2001AA413210).
文摘An intuitive 2D model of circular electrical impedance tomography (EIT) sensor with small size electrodes is established based on the theory of analytic functions. The validation of the model is proved using the result from the solution of Laplace equation. Suggestions on to electrode optimization and explanation to the ill-condition property of the sensitivity matrix are provided based on the model, which takes electrode distance into account and can be generalized to the sensor with any simple connected region through a conformal transformation. Image reconstruction algorithms based on the model are implemented to show feasibility of the model using experimental data collected from the EIT system developed in Tianjin University. In the simulation with a human chestlike configuration, electrical conductivity distributions are reconstructed using equi-potential backprojection (EBP) and Tikhonov regularization (TR) based on a conformal transformation of the model. The algorithms based on the model are suitable for online image reconstruction and the reconstructed results are aood both in size and position.