To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequence...To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequenced.The results showed that the plankton belongs to Oxyrrhis marina.The salinity tolerance of O.marina ranges from 4 to 60.Seven selected groups were built up to evaluate salinity tolerance and to assess genetic diversity by RAPD.The salinity tolerance comparison revealed considerable differences among groups:the strains of O.marina in group 4 could survive under salinity from 4 to 32,while the strains selected for salinity 60 died under the salinity lower than 16.Analysis of genetic diversity of the seven groups showed that the mean genetic diversity index value was 0.28,but it was only 0.16 in selected group of 4 and was 0.24 for group 60.The result of AMOVA suggested a significantly positive relationship between the salinity tolerance and genetic diversity of O.marina (P<0.01).This study indicates that consideration of intraspecific genetic divergence in O.marina might be indispensable when using it as a model in the study of salinity tolerance of wild plankton.展开更多
Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species.One effective way to conserve these rare and endangered species is through reintroduction.In this r...Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species.One effective way to conserve these rare and endangered species is through reintroduction.In this review,we summarize the advances in wild plant reintroduction from five perspectives:the establishment of reintroduction biology as an important tool for biodiversity conservation;the importance of genetic diversity in reintroduction;reintroduction under global climate change;recruitment limitation in reintroduction;and reintroduction and ecological restoration.In addition,we consider the future of plant reintroduction strategies.展开更多
The roles that top predators play in regulating the structure and function of ecosystems have long been controversial. This is particularly the case when predators pose adverse risks for human life and/or economic int...The roles that top predators play in regulating the structure and function of ecosystems have long been controversial. This is particularly the case when predators pose adverse risks for human life and/or economic interests. The critique of literature on dingoes and their ecological roles in Australia provided by Allen et al. (2011) shows that top predators remain a potentially polarising issue. In opposition to Allen et al. we argue that these widespread patterns of species' abundances, attributed to the ef- fects of dingoes and evident at scales ranging from the foraging behaviour of individuals through to continental scale patterns of species abundances, constitute strong support for the mesopredator release hypothesis and provide evidence that dingoes benefit biodiversity conservation by inducing community wide trophic cascades. Harnessing the positive ecological effects of dingoes while at the same time minimising their impacts on agriculture is a major socio-political challenge in Australia [Current Zoology 57 (5): 668-670].展开更多
文摘To evaluate the relationship between salinity tolerance and genetic diversity of plankton,we collected a wild species of plankton from Taipingjiao,Qingdao.The fragment of ITS1-5.8S rDNA-ITS2 was extracted and sequenced.The results showed that the plankton belongs to Oxyrrhis marina.The salinity tolerance of O.marina ranges from 4 to 60.Seven selected groups were built up to evaluate salinity tolerance and to assess genetic diversity by RAPD.The salinity tolerance comparison revealed considerable differences among groups:the strains of O.marina in group 4 could survive under salinity from 4 to 32,while the strains selected for salinity 60 died under the salinity lower than 16.Analysis of genetic diversity of the seven groups showed that the mean genetic diversity index value was 0.28,but it was only 0.16 in selected group of 4 and was 0.24 for group 60.The result of AMOVA suggested a significantly positive relationship between the salinity tolerance and genetic diversity of O.marina (P<0.01).This study indicates that consideration of intraspecific genetic divergence in O.marina might be indispensable when using it as a model in the study of salinity tolerance of wild plankton.
基金supported by the National Key Fundamental Research Development Plan (2009CB421101)the National Natural Science Foundation of China (40871249,30670370)
文摘Human disturbance and climate change have increased the risk of extinction for rare and endangered wild plant species.One effective way to conserve these rare and endangered species is through reintroduction.In this review,we summarize the advances in wild plant reintroduction from five perspectives:the establishment of reintroduction biology as an important tool for biodiversity conservation;the importance of genetic diversity in reintroduction;reintroduction under global climate change;recruitment limitation in reintroduction;and reintroduction and ecological restoration.In addition,we consider the future of plant reintroduction strategies.
文摘The roles that top predators play in regulating the structure and function of ecosystems have long been controversial. This is particularly the case when predators pose adverse risks for human life and/or economic interests. The critique of literature on dingoes and their ecological roles in Australia provided by Allen et al. (2011) shows that top predators remain a potentially polarising issue. In opposition to Allen et al. we argue that these widespread patterns of species' abundances, attributed to the ef- fects of dingoes and evident at scales ranging from the foraging behaviour of individuals through to continental scale patterns of species abundances, constitute strong support for the mesopredator release hypothesis and provide evidence that dingoes benefit biodiversity conservation by inducing community wide trophic cascades. Harnessing the positive ecological effects of dingoes while at the same time minimising their impacts on agriculture is a major socio-political challenge in Australia [Current Zoology 57 (5): 668-670].