There is usually source effect in the field work of controlled-source audio-frequency magnetotelluric method.Source effect is a thorny problem during field working,data processing and interpretation.Therefore,it is ve...There is usually source effect in the field work of controlled-source audio-frequency magnetotelluric method.Source effect is a thorny problem during field working,data processing and interpretation.Therefore,it is very important for the results of field prospecting to model source effect and summarize its influence rules.Based on the previous research,the authors use 3D finite difference method to simulate the electromagnetic field and set different anomaly situation to study the source effect in near-field measurement,then conclude the influence rules of source effect.Simulations provide the reference for the actual field work and data processing to correct the influence of source effect,so the information of the underground will be more approaching to the real.展开更多
In order to investigate the physiological effects of airport noise exposure on organisms,in this study,we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d.For c...In order to investigate the physiological effects of airport noise exposure on organisms,in this study,we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d.For comparison,we also used unexposed control rats.Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels(LWECPN) of 75 and 80 dB for the two experimental groups.We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine(NE) by high performance liquid chromatography-fluorimetric detection(HPLC-FLD).We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy(TEM).Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number(P<0.05) and significantly longer center area duration(P<0.05) than control animals.After 29 d of airport noise exposure,the concentration of plasma NE of exposed rats was significantly higher than that of the control group(P<0.05).We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d.In conclusion,exposing rats to long-term aircraft noise affects their behaviors,plasma NE levels,and cell morphology of the temporal lobe.展开更多
Fear and anxiety may be adaptive responses to life-threatening situations, and animals may communicate fear to others vocally. A fundamental understanding of fear inducing sounds is important for both wildlife conserv...Fear and anxiety may be adaptive responses to life-threatening situations, and animals may communicate fear to others vocally. A fundamental understanding of fear inducing sounds is important for both wildlife conservation and management because it helps us understand how to design repellents and also how (and why) animals may be negatively impacted by anthropogenic sounds. Nonlinear phenomena--sounds produced by the desynchronization of vibrations in a sound production system-are commonly found in stress-induced animal vocalizations, such as in alarm calls, mobbing calls, and fear screams. There are several functional hypotheses for these nonlinear phenomena. One specific hypothesis is the unpredictability hypothesis, which suggests that because nonlinear phenomena are more variable and somewhat unpredictable, animals are less likely to habituate to them. Animals should, therefore, have a prolonged response to sounds with nonlinear phenomena than sounds without them. Most of the studies involving nonlinear phenomena have used mammalian subjects and conspecific stimuli. Our study fo- cused on white-crowned sparrows (Zonotrichia leucophrys ssp. oriantha) and used synthesized acoustic stimuli to investigate behavioral responses to stimuli with and without nonlinear phenomena. We predicted that birds would be less relaxed after hearing a stimulus with a nonlinear component. We calculated the difference from baseline of proportion of time spent in relaxed behaviors and performed pair-wise comparisons between a pure tone control stimulus and each of three experimental stimuli, including a frequency jump up, a frequency jump down, and white noise. These comparisons showed that in the 30q50 s after the playback experiment, birds were significantly less relaxed after hearing noise or an abrupt frequency jump down an octave but not an abrupt frequency jump up an octave or a pure tone. Nonlinear phenomena, therefore, may be generally arousing to animals and may explain why these acoustic properties are commonly found in animal signals associated with fear [Current Zoology 60 (4): 534-541, 2014].展开更多
基金Supported by project of China Geological Survey(No.12120113098400)
文摘There is usually source effect in the field work of controlled-source audio-frequency magnetotelluric method.Source effect is a thorny problem during field working,data processing and interpretation.Therefore,it is very important for the results of field prospecting to model source effect and summarize its influence rules.Based on the previous research,the authors use 3D finite difference method to simulate the electromagnetic field and set different anomaly situation to study the source effect in near-field measurement,then conclude the influence rules of source effect.Simulations provide the reference for the actual field work and data processing to correct the influence of source effect,so the information of the underground will be more approaching to the real.
基金Project supported by the National Natural Science Foundation of China (No. 1060408)the National Public Benefit Research Foundation of China (No. 200809142)
文摘In order to investigate the physiological effects of airport noise exposure on organisms,in this study,we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d.For comparison,we also used unexposed control rats.Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels(LWECPN) of 75 and 80 dB for the two experimental groups.We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine(NE) by high performance liquid chromatography-fluorimetric detection(HPLC-FLD).We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy(TEM).Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number(P<0.05) and significantly longer center area duration(P<0.05) than control animals.After 29 d of airport noise exposure,the concentration of plasma NE of exposed rats was significantly higher than that of the control group(P<0.05).We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d.In conclusion,exposing rats to long-term aircraft noise affects their behaviors,plasma NE levels,and cell morphology of the temporal lobe.
文摘Fear and anxiety may be adaptive responses to life-threatening situations, and animals may communicate fear to others vocally. A fundamental understanding of fear inducing sounds is important for both wildlife conservation and management because it helps us understand how to design repellents and also how (and why) animals may be negatively impacted by anthropogenic sounds. Nonlinear phenomena--sounds produced by the desynchronization of vibrations in a sound production system-are commonly found in stress-induced animal vocalizations, such as in alarm calls, mobbing calls, and fear screams. There are several functional hypotheses for these nonlinear phenomena. One specific hypothesis is the unpredictability hypothesis, which suggests that because nonlinear phenomena are more variable and somewhat unpredictable, animals are less likely to habituate to them. Animals should, therefore, have a prolonged response to sounds with nonlinear phenomena than sounds without them. Most of the studies involving nonlinear phenomena have used mammalian subjects and conspecific stimuli. Our study fo- cused on white-crowned sparrows (Zonotrichia leucophrys ssp. oriantha) and used synthesized acoustic stimuli to investigate behavioral responses to stimuli with and without nonlinear phenomena. We predicted that birds would be less relaxed after hearing a stimulus with a nonlinear component. We calculated the difference from baseline of proportion of time spent in relaxed behaviors and performed pair-wise comparisons between a pure tone control stimulus and each of three experimental stimuli, including a frequency jump up, a frequency jump down, and white noise. These comparisons showed that in the 30q50 s after the playback experiment, birds were significantly less relaxed after hearing noise or an abrupt frequency jump down an octave but not an abrupt frequency jump up an octave or a pure tone. Nonlinear phenomena, therefore, may be generally arousing to animals and may explain why these acoustic properties are commonly found in animal signals associated with fear [Current Zoology 60 (4): 534-541, 2014].