Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionl...Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionless time were derived from 10 influencing factors of the problem by using dimensional analysis. Simulations of horizontal well in reservoir with bottom water were run to find the prediction correlation. A general and concise functional relationship for predicting breakthrough time was established based on simulation results and theoretical analysis. The breakthrough time of one conceptual model predicted by the correlation is very close to the result by Eclipse with less than 2% error. The practical breakthrough time of one well in Helder oilfield is 10 d, and the predicted results by the method is 11.2 d, which is more accurate than the analytical result. Case study indicates that the method could predict breakthrough time of horizontal well under different reservoir conditions accurately. For its university and ease of use, the method is suitable for quick prediction of breakthrough time.展开更多
A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Ar...A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Arrhenius reaction rates are implemented in combustion chemistry modeling. On the other hand, a reduced mechanism containing important reactions of ethanol involving heat release rate and reaction rates compatible with experimental data is employed. Since controls of combustion phenomenon and ignition timing are the main issues of these engines, the effects of inlet temperature and equivalence ratio as the controlling factors on the operating parameters such as ignition timing, burn duration, in-cylinder temperature and pressure of HCCI engines are explored. The results show that the maximum predicted pressures for thermodynamic model are about 71.3×10~5 Pa and 79.79×10~5 Pa, and for chemical kinetic model, they are about 71.48×10~5 Pa and 78.123×10~5 Pa, fairly comparable with corresponding experimental values of 72×10~5 Pa and 78.7×10~5 Pa. It is observed that increasing the initial temperature advances the ignition timing, decreases the burn duration and increases the peak temperature and pressure. Moreover, the maximum temperature and pressure are associated with richer mixtures.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
The efforts by the Financial Reporting Council (FRC) in the United Kingdom (UK) to stimulate audit firms to improve audit quality manifest in its Discussion Paper: Promoting Audit Quality warrant further analysis...The efforts by the Financial Reporting Council (FRC) in the United Kingdom (UK) to stimulate audit firms to improve audit quality manifest in its Discussion Paper: Promoting Audit Quality warrant further analysis. The discussion paper identified factors such as audit firm culture, the quality of people, the effectiveness of audit process, and outside factors such as management and audit committee (AC) which can affect level of audit quality in practice. Reporting upon the analysis of responses to the discussion paper, the objective of this study is to analyze views from the respondents about various issues related to audit quality. This study composes of how subject of audit quality is seen in practice, which contributes to our understanding of conditions, events, or processes that can affect audit quality in practice.展开更多
基金Project(2011ZX05009-004)supported by the National Science and Technology Major Projects of China
文摘Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionless time were derived from 10 influencing factors of the problem by using dimensional analysis. Simulations of horizontal well in reservoir with bottom water were run to find the prediction correlation. A general and concise functional relationship for predicting breakthrough time was established based on simulation results and theoretical analysis. The breakthrough time of one conceptual model predicted by the correlation is very close to the result by Eclipse with less than 2% error. The practical breakthrough time of one well in Helder oilfield is 10 d, and the predicted results by the method is 11.2 d, which is more accurate than the analytical result. Case study indicates that the method could predict breakthrough time of horizontal well under different reservoir conditions accurately. For its university and ease of use, the method is suitable for quick prediction of breakthrough time.
文摘A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Arrhenius reaction rates are implemented in combustion chemistry modeling. On the other hand, a reduced mechanism containing important reactions of ethanol involving heat release rate and reaction rates compatible with experimental data is employed. Since controls of combustion phenomenon and ignition timing are the main issues of these engines, the effects of inlet temperature and equivalence ratio as the controlling factors on the operating parameters such as ignition timing, burn duration, in-cylinder temperature and pressure of HCCI engines are explored. The results show that the maximum predicted pressures for thermodynamic model are about 71.3×10~5 Pa and 79.79×10~5 Pa, and for chemical kinetic model, they are about 71.48×10~5 Pa and 78.123×10~5 Pa, fairly comparable with corresponding experimental values of 72×10~5 Pa and 78.7×10~5 Pa. It is observed that increasing the initial temperature advances the ignition timing, decreases the burn duration and increases the peak temperature and pressure. Moreover, the maximum temperature and pressure are associated with richer mixtures.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
文摘The efforts by the Financial Reporting Council (FRC) in the United Kingdom (UK) to stimulate audit firms to improve audit quality manifest in its Discussion Paper: Promoting Audit Quality warrant further analysis. The discussion paper identified factors such as audit firm culture, the quality of people, the effectiveness of audit process, and outside factors such as management and audit committee (AC) which can affect level of audit quality in practice. Reporting upon the analysis of responses to the discussion paper, the objective of this study is to analyze views from the respondents about various issues related to audit quality. This study composes of how subject of audit quality is seen in practice, which contributes to our understanding of conditions, events, or processes that can affect audit quality in practice.