In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes...In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes, including the constant voltage charging mode (CVCM), the constant current charging mode (CCCM) and the constant power charging mode (CPCM), based on the practical EDLC product. Numerical calculation methods are presented for different charging modes, and the charging efficiency is also reviewed with strict mathematical deductions, which is validated to be accurate enough and applicable through a simple case with the PV/EDLC system illustration. Finally, trade-off problems between charging time and energy loss are also studied. Research results show that the CPCM is more suitable for microgrid networks compared with the traditional constant-voltage and constant-current charging modes. The hybrid charging method is recommended to save energy and keep high efficiency relatively at the same time. However, how to manage the combination percentage of different charging modes in a reasonable way should be dealt with according to the practical requirements.展开更多
There are many experimental approaches,field investigations and numerical calculations for movements of woods in a clear water and debris flow.However,kinematic conditions for accumulated logs and the interactions bet...There are many experimental approaches,field investigations and numerical calculations for movements of woods in a clear water and debris flow.However,kinematic conditions for accumulated logs and the interactions between a main flow and logs have not been fully evaluated.Mitigations for woods need taking into account the characteristics of tree species such as conifer and broad-leaf trees and of shapes such as root swells and crown.In the present study,we focus on the differences in specific weight of conifer and broad-leaf trees with some moisture in a sediment-water mixture flow with narrow flow width,and consider that conifer and broad-leaf tree are floating and submerged solid phase,respectively.Flume tests are conducted in steady flow of clear and debris flow over a rigid bed in order to evaluate conifer and broad-leaf tree movement in clear water and debris flow.Experimental data indicates that dimensionless transverse diffusion coefficient can be 0.1 to 0.4 and 0.3 to 0.9 in flow direction.Those diffusive characteristics seem to be independent of Reynolds number and Froude number,but dependent of bed slope,i.e.,gravity,though detailed considerations are needed to discuss about flow characteristics such as spatial eddy structures,momentum transfer induced by interactions of logs and so on.展开更多
In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin...In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.展开更多
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St...Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.展开更多
Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire t...Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
The numerical calculation of the energy distribution of electrons emitted by the tungsten, for a triangular barrier and given reflection images, has been carried out. It is shown that the numerical solution of Schrodi...The numerical calculation of the energy distribution of electrons emitted by the tungsten, for a triangular barrier and given reflection images, has been carried out. It is shown that the numerical solution of Schrodinger equation is the most effective method of calculation of the transparency of potential barrier among those used in work. I-V characteristics, which were calculated by the application of this method under different conditions, match the experimental data the best. The application of the numerical solution of Schrodinger equation for the calculation of transparency of the potential barrier enables the in-depth analysis of the tunnels phenomena and allows forecasting the effects which can not be received by application of Wentzel-Kramers-Brillouin approximation.展开更多
The general interpolation mentioned in this a rticle provides an effective way for reducing the amount of calculation of direc t optimal exploration. It has been testified by real case calculations that the interpolat...The general interpolation mentioned in this a rticle provides an effective way for reducing the amount of calculation of direc t optimal exploration. It has been testified by real case calculations that the interpolation is not only reliable but also can save the amount of calculation by nearly 36%. Large amount of calculation and lacking strict theoretical bas is has been th e two disadvantage of direct method by new. If this defect is not overcome, they will not only s eriously affect the application of this method, but also hinder its further rese arch. Based on sufficient calculation practice, this article has made a primary discussion about the theory and method of reducing the amount of calculation, an d has achieved some satisfactory results.展开更多
In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities ...In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities to be suitable for the realization of all possible positive operator-valued measurements of bipartite polarization states. This scheme is feasible in the lab with the current experimental technology.展开更多
This article is based on traditionally intrinsic value assessment model. We employed the assumption on the differences in future increase rates of companies, taking into account of the expected Economic Value Added (E...This article is based on traditionally intrinsic value assessment model. We employed the assumption on the differences in future increase rates of companies, taking into account of the expected Economic Value Added (EVA) discount and the capital investment, to establish a high increase model, a two-stage EVA discount model and a three-stage EVA discount model for the intrinsic value assessment. Those models eliminate the great fluctuation of free cash flow in calculating the capital expenditure by setting aside the cash flow of the company’s investment in the year and considering only the capital cost. This method needs only to assess the EVA flow in different year in probing the intrinsic value of a company, thus give more consistent conclusion than conventional methods.展开更多
Some properties of excitons in polar semiconductors are studied theoretically by means of squeezed state variational approach. This method makes it possible to consider bilinear terms of the phonon operators as well a...Some properties of excitons in polar semiconductors are studied theoretically by means of squeezed state variational approach. This method makes it possible to consider bilinear terms of the phonon operators as well as linear terms arising from the Lee-Low-Pines (LLP)-like transformation. The exciton ground state energy and binding energy are calculated numerically. It is shown that the squeezing effect is significant in the case of strong exciton-phonon coupling region.展开更多
基金The National Natural Science Foundation of China (No.50907010)Ph.D.Programs Foundation of Ministry of Education of China(No.20070286047)Scientific Innovation Foundation for Youngsters of CSEE
文摘In order to review storage performance of the electric double layer capacitor (EDLC) in microgrid applications, charging time and storage efficiency issues are mainly studied aiming at three different charging modes, including the constant voltage charging mode (CVCM), the constant current charging mode (CCCM) and the constant power charging mode (CPCM), based on the practical EDLC product. Numerical calculation methods are presented for different charging modes, and the charging efficiency is also reviewed with strict mathematical deductions, which is validated to be accurate enough and applicable through a simple case with the PV/EDLC system illustration. Finally, trade-off problems between charging time and energy loss are also studied. Research results show that the CPCM is more suitable for microgrid networks compared with the traditional constant-voltage and constant-current charging modes. The hybrid charging method is recommended to save energy and keep high efficiency relatively at the same time. However, how to manage the combination percentage of different charging modes in a reasonable way should be dealt with according to the practical requirements.
基金supported by Research Budget from Research and Development Center,NIPPON KOEI Co.,Ltd (Research theme:Modeling for debris flow with woods and their applicability)
文摘There are many experimental approaches,field investigations and numerical calculations for movements of woods in a clear water and debris flow.However,kinematic conditions for accumulated logs and the interactions between a main flow and logs have not been fully evaluated.Mitigations for woods need taking into account the characteristics of tree species such as conifer and broad-leaf trees and of shapes such as root swells and crown.In the present study,we focus on the differences in specific weight of conifer and broad-leaf trees with some moisture in a sediment-water mixture flow with narrow flow width,and consider that conifer and broad-leaf tree are floating and submerged solid phase,respectively.Flume tests are conducted in steady flow of clear and debris flow over a rigid bed in order to evaluate conifer and broad-leaf tree movement in clear water and debris flow.Experimental data indicates that dimensionless transverse diffusion coefficient can be 0.1 to 0.4 and 0.3 to 0.9 in flow direction.Those diffusive characteristics seem to be independent of Reynolds number and Froude number,but dependent of bed slope,i.e.,gravity,though detailed considerations are needed to discuss about flow characteristics such as spatial eddy structures,momentum transfer induced by interactions of logs and so on.
基金The project supported by the State Key Project of Fundamental Research of China under Grant No. G2000067101
文摘In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.
基金Supported by project of China Geological Surrey(No.GZHL20110326)
文摘Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.
基金Financial support for this work provided by the National"Eleventh Five-Year" Key Scientific and Technological Support[Program (No. 2007BAK22B04)2008 independent task (No.SKLCRSM08B12)
文摘Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
文摘The numerical calculation of the energy distribution of electrons emitted by the tungsten, for a triangular barrier and given reflection images, has been carried out. It is shown that the numerical solution of Schrodinger equation is the most effective method of calculation of the transparency of potential barrier among those used in work. I-V characteristics, which were calculated by the application of this method under different conditions, match the experimental data the best. The application of the numerical solution of Schrodinger equation for the calculation of transparency of the potential barrier enables the in-depth analysis of the tunnels phenomena and allows forecasting the effects which can not be received by application of Wentzel-Kramers-Brillouin approximation.
文摘The general interpolation mentioned in this a rticle provides an effective way for reducing the amount of calculation of direc t optimal exploration. It has been testified by real case calculations that the interpolation is not only reliable but also can save the amount of calculation by nearly 36%. Large amount of calculation and lacking strict theoretical bas is has been th e two disadvantage of direct method by new. If this defect is not overcome, they will not only s eriously affect the application of this method, but also hinder its further rese arch. Based on sufficient calculation practice, this article has made a primary discussion about the theory and method of reducing the amount of calculation, an d has achieved some satisfactory results.
基金supported by the Research Projects of Huaqiao University under Grant No.07BS406
文摘In this letter, we propose a scheme of a special quantum optical Fredkin gate assisted by optical manip- ulations and postselection from the coincidence measurements, and then modify it with cross-Kerr nonlinearities to be suitable for the realization of all possible positive operator-valued measurements of bipartite polarization states. This scheme is feasible in the lab with the current experimental technology.
文摘This article is based on traditionally intrinsic value assessment model. We employed the assumption on the differences in future increase rates of companies, taking into account of the expected Economic Value Added (EVA) discount and the capital investment, to establish a high increase model, a two-stage EVA discount model and a three-stage EVA discount model for the intrinsic value assessment. Those models eliminate the great fluctuation of free cash flow in calculating the capital expenditure by setting aside the cash flow of the company’s investment in the year and considering only the capital cost. This method needs only to assess the EVA flow in different year in probing the intrinsic value of a company, thus give more consistent conclusion than conventional methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.10174024 and 10474025
文摘Some properties of excitons in polar semiconductors are studied theoretically by means of squeezed state variational approach. This method makes it possible to consider bilinear terms of the phonon operators as well as linear terms arising from the Lee-Low-Pines (LLP)-like transformation. The exciton ground state energy and binding energy are calculated numerically. It is shown that the squeezing effect is significant in the case of strong exciton-phonon coupling region.