期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合在线检索和量化低秩适配器微调范式的新闻文稿生成
1
作者 励琦 刘志强 +3 位作者 李岚 向宗元 毛瑞琛 陈群 《计算机应用》 CSCD 北大核心 2024年第S01期34-38,共5页
现有大语言模型(LLM)由于存在信息滞后性,在特定风格新闻稿件生成任务上存在生成内容捏造、行文不流畅连贯等问题。为了缓解这些问题,提出一套基于实时在线的web_search技术和量化低秩适配器(QLoRA)微调技术的新闻文稿生成系统的解决方... 现有大语言模型(LLM)由于存在信息滞后性,在特定风格新闻稿件生成任务上存在生成内容捏造、行文不流畅连贯等问题。为了缓解这些问题,提出一套基于实时在线的web_search技术和量化低秩适配器(QLoRA)微调技术的新闻文稿生成系统的解决方案。首先,利用Bing和Google提供的API根据给定的新闻标题,获取最新的新闻素材集合;其次,利用语义相关性模型和摘要模型对初始素材集合进行筛选和文本处理,选取准确的新闻内容;再次,设计动态的prompt模板综合处理检索到的新闻素材,并在prompt中加入新闻风格约束提示词;最后,将完整的prompt提示词指令输入经过QLoRA微调的LLM中,生成新闻文稿。实验结果显示,在人工整理的热点新闻标题数据集上,所提方案生成的新闻在内容正确性、逻辑连贯性等多维人工评估标准上的平均准确率达到90%,满足实际生产应用的需求,有效提高了新闻生产的效率和质量。目前,该系统已在杭州文广集团内部成功部署应用。 展开更多
关键词 在线检索 量化低秩适配器 微调范式 大语言模型 文稿生成 提示词
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部