In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the c...In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.展开更多
A novel adsorbent was prepared by modifying orange peel with sodium hydroxide and calcium chloride. The morphological and characteristics of the adsorbent were evaluated by infrared spectroscopy (IR), scanning elect...A novel adsorbent was prepared by modifying orange peel with sodium hydroxide and calcium chloride. The morphological and characteristics of the adsorbent were evaluated by infrared spectroscopy (IR), scanning electron microscopy (SEM) and N2-adsorption techniques. The adsorption behavior of Cu^2+, Pb^2+ and Zn^2+ on modified orange peel (SCOP) was studied by varying parameters like pH, initial concentration of metal ions. Equilibrium was well described by Langmuir equation with the maximum adsorption capacities for Cu^2+, Pb^2+ and Zn^2+ of 70.73, 209.8 and 56.18 mg/g, respectively. Based on the results obtained in batch experiments, breakthrough profiles were examined using a column packed with SCOP for the separation of small concentration of Pb^2+ from an excess of Zn^2+ followed by elution tests. Ion exchange with Ca^2+ neutralizing the carboxyl groups of the pectin was found to be the predominant mechanism.展开更多
The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and...The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively.展开更多
Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass...Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.展开更多
The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and ...The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.展开更多
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe...This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.展开更多
Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying contro...Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying control network simulation optimization design is proposed. This method is based on the inner reliability index of the observation values.展开更多
Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronizati...Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.展开更多
AIM: To evaluate disease-specific quality of life (QOL) in liver cirrhosis patients and to compare it with those of a healthy population. Also an important objective was to assess whether QOL in liver cirrhosis patien...AIM: To evaluate disease-specific quality of life (QOL) in liver cirrhosis patients and to compare it with those of a healthy population. Also an important objective was to assess whether QOL in liver cirrhosis patients differs by age and gender, by type and severity of disease. METHODS: The case group of 131 liver cirrhosis patients was selected. The control group of 262 was enrolled from a healthy population according to the scheme of case-control study. Clinical, demographic, laboratory data were collected. QOL was measured with a specific chronic liver disease questionnaire (CLDQ), which was translated and validated in Lithuanian. QOL scores were compared between groups by age, gender, type and severity of disease. Cronbach’s alpha statistics calculation was used for evaluation of internal consistency reliability. Student’s t test or ANOVA were used for evaluation hypothesis about probability equation. RESULTS: QOL was significantly lower in liver cirrhosis patients than in healthy population (59.5 ± 18.3 vs 85.3 ± 12.3, P < 0.001). The significant QOL differences between case and control groups were observed in domains of worry and abdominal symptoms, the smaller differences-in emotional functions and systematic symptom domains. Significantly worse QOL was in observed patients with increased clinical severity of the disease measured by Child-Pugh class. Age, gender and etiology of disease had an insignificant effect on QOL in cirrhotic patients. CONCLUSION: QOL was significantly impaired in all CLDQ domains in liver cirrhosis patients. Increase in severity of disease was the major factor associated with poorer QOL.展开更多
The action between imidazolinyl-quaternary-ammonium-salt(IQAS) molecule and Fe atom was studied, and the influence of the alkyl group connected with N atom of imidazoline ring on corrosion inhibition efficiency was ex...The action between imidazolinyl-quaternary-ammonium-salt(IQAS) molecule and Fe atom was studied, and the influence of the alkyl group connected with N atom of imidazoline ring on corrosion inhibition efficiency was explored. Quantum chemical methods, HF/6-31 G and HF/Lan L2 dz, were applied successively to calculate the parameters such as front molecular orbit energy of IQASⅠ-Ⅳ and chemical adsorption for IQASⅠ-Ⅳ and Fe atom. The corrosion inhibition efficiency was measured with the weight loss method of carbon steel samples in acidic solution and oil field sewage. Based on the theoretical analyses and experimental results, it is concluded that N-Fe coordination bond is formed between IQAS molecule and Fe atom, corrosion inhibition efficiency is decreased in the following order(from large to small): IQAS Ⅳ, IQAS Ⅲ, IQAS Ⅱ, IQASⅠ.展开更多
基金Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of Chinathe Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ11-0150)+1 种基金the National Natural Science Foundation of China(No.51177011)the National High Technology Research and Development Program of China(863 Program)(No.2012AA050210)
文摘In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.
基金Project (50774100) supported by the National Natural Science Foundation of China
文摘A novel adsorbent was prepared by modifying orange peel with sodium hydroxide and calcium chloride. The morphological and characteristics of the adsorbent were evaluated by infrared spectroscopy (IR), scanning electron microscopy (SEM) and N2-adsorption techniques. The adsorption behavior of Cu^2+, Pb^2+ and Zn^2+ on modified orange peel (SCOP) was studied by varying parameters like pH, initial concentration of metal ions. Equilibrium was well described by Langmuir equation with the maximum adsorption capacities for Cu^2+, Pb^2+ and Zn^2+ of 70.73, 209.8 and 56.18 mg/g, respectively. Based on the results obtained in batch experiments, breakthrough profiles were examined using a column packed with SCOP for the separation of small concentration of Pb^2+ from an excess of Zn^2+ followed by elution tests. Ion exchange with Ca^2+ neutralizing the carboxyl groups of the pectin was found to be the predominant mechanism.
基金Project(FRF-TP-20-041A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2016YFC0600801,2017YFC0804103)supported by the State Key Research Development Program of ChinaProjects(51774022,52074020)supported by the National Natural Science Foundation of China。
文摘The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively.
基金Project(BK20150005) supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, China Project(2015XKZD05) supported by the Fundamental Research Funds for the Central Universities, China
文摘Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.
基金supported by the National Key Basic Research Program of China(973 Program,2014CB239303)the National Natural Science Foundation of China(21872031,U1705251)the Award Program for Minjiang Scholar Professorship~~
文摘The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.
文摘This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
文摘Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying control network simulation optimization design is proposed. This method is based on the inner reliability index of the observation values.
基金National Natural Science Foundation of China(No.61272432)Qingdao Science and Technology Development Plan(No.12-1-4-6-(10)-jch)
文摘Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.
文摘AIM: To evaluate disease-specific quality of life (QOL) in liver cirrhosis patients and to compare it with those of a healthy population. Also an important objective was to assess whether QOL in liver cirrhosis patients differs by age and gender, by type and severity of disease. METHODS: The case group of 131 liver cirrhosis patients was selected. The control group of 262 was enrolled from a healthy population according to the scheme of case-control study. Clinical, demographic, laboratory data were collected. QOL was measured with a specific chronic liver disease questionnaire (CLDQ), which was translated and validated in Lithuanian. QOL scores were compared between groups by age, gender, type and severity of disease. Cronbach’s alpha statistics calculation was used for evaluation of internal consistency reliability. Student’s t test or ANOVA were used for evaluation hypothesis about probability equation. RESULTS: QOL was significantly lower in liver cirrhosis patients than in healthy population (59.5 ± 18.3 vs 85.3 ± 12.3, P < 0.001). The significant QOL differences between case and control groups were observed in domains of worry and abdominal symptoms, the smaller differences-in emotional functions and systematic symptom domains. Significantly worse QOL was in observed patients with increased clinical severity of the disease measured by Child-Pugh class. Age, gender and etiology of disease had an insignificant effect on QOL in cirrhotic patients. CONCLUSION: QOL was significantly impaired in all CLDQ domains in liver cirrhosis patients. Increase in severity of disease was the major factor associated with poorer QOL.
基金Project (05A002) supported by Scientific Research Fundation of Hunan Provincial Education Depart ment project(04JJY40010) supported by the Natural Science Foundation of Hunan Province
文摘The action between imidazolinyl-quaternary-ammonium-salt(IQAS) molecule and Fe atom was studied, and the influence of the alkyl group connected with N atom of imidazoline ring on corrosion inhibition efficiency was explored. Quantum chemical methods, HF/6-31 G and HF/Lan L2 dz, were applied successively to calculate the parameters such as front molecular orbit energy of IQASⅠ-Ⅳ and chemical adsorption for IQASⅠ-Ⅳ and Fe atom. The corrosion inhibition efficiency was measured with the weight loss method of carbon steel samples in acidic solution and oil field sewage. Based on the theoretical analyses and experimental results, it is concluded that N-Fe coordination bond is formed between IQAS molecule and Fe atom, corrosion inhibition efficiency is decreased in the following order(from large to small): IQAS Ⅳ, IQAS Ⅲ, IQAS Ⅱ, IQASⅠ.