The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five ...The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five damage modes.The cracking mode 3 contains transverse cracking,matrix cracking and fiber/matrix interface debonding.The cracking mode 5 only contains matrix cracking and fiber/matrix interface debonding.The cracking stress of modes 3 and 5 appearing between existing transverse cracks is determined.And the multiple matrix crack evolution of mode 3 is determined.The effects of ply thickness,fiber volume fraction,interface shear stress and interface debonding energy on the cracking stress and matrix crack evolution are analyzed.Results indicate that the cracking mode 3 is more likely to appear between transverse cracks for the SiC/CAS material.展开更多
According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with...According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with quality of multi-service and membership function of satisfaction, which integrates the energy consumption of communication and residual and the information of time delay into the membership function of satisfaction to solve the equilibrium factor, so that it can become the optimal routing that balances the network lifetime, transmission delay of data, and node energy consumption of nodes. Simulation experiment shows that adopting the algorithm can make lifecycle of nodes longer and network transmit more data packets at the same time. Experimental results verify the algorithm can effectively balance the network energy, reduce the energy consumption and prolong the network lifetime.展开更多
基金Supported by the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated using the energy balance method.Under tensile loading,the cross-ply ceramic matrix composites have five damage modes.The cracking mode 3 contains transverse cracking,matrix cracking and fiber/matrix interface debonding.The cracking mode 5 only contains matrix cracking and fiber/matrix interface debonding.The cracking stress of modes 3 and 5 appearing between existing transverse cracks is determined.And the multiple matrix crack evolution of mode 3 is determined.The effects of ply thickness,fiber volume fraction,interface shear stress and interface debonding energy on the cracking stress and matrix crack evolution are analyzed.Results indicate that the cracking mode 3 is more likely to appear between transverse cracks for the SiC/CAS material.
文摘According to the problem of energy consumption in wireless sensor network (WSN),this paper puts forward a routing optimization algorithm with quality of multi-service, using the function of routing optimization with quality of multi-service and membership function of satisfaction, which integrates the energy consumption of communication and residual and the information of time delay into the membership function of satisfaction to solve the equilibrium factor, so that it can become the optimal routing that balances the network lifetime, transmission delay of data, and node energy consumption of nodes. Simulation experiment shows that adopting the algorithm can make lifecycle of nodes longer and network transmit more data packets at the same time. Experimental results verify the algorithm can effectively balance the network energy, reduce the energy consumption and prolong the network lifetime.