The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved ...The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved heat is helpful in terms of understanding the nature of the interactions be- tween the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the im- portant role of microcalorimetry in understanding catalytic performance from the energetic point of view.展开更多
This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations...This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay.展开更多
In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, ...In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, and suggestions on accelerating exploitation and application of the conductor are put forward.展开更多
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ...In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.展开更多
Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received inc...Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing attention and still remains challenging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification(controlling of ambient humidity), were employed and proved to be both effective. The regeneration frequency of the filter could be reduced by 55% with ultrasonic atomization, while steam humidification could lead to a 78% reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an optimized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m-2upon the ultrasonic atomization and 720 g·m-2upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.展开更多
Aiming at the circular chamber under uniform stress field in deep energy storage and mining,analytical solutions of stress and plastic zone of the surrounding rock under different far-field stress and internal pressur...Aiming at the circular chamber under uniform stress field in deep energy storage and mining,analytical solutions of stress and plastic zone of the surrounding rock under different far-field stress and internal pressure were derived based on bi-modulus theory and the elastic-brittle-ideal plastic constitutive model.Evolution trend of the elasticplastic stress and plastic region with different elastic constant ratios and residual strength coefficients were analyzed in details.Results revealed that when the internal pressure was small,the three-direction principal stress was compressive stress and the stress field distribution of the surrounding rock was not affected by the moduli difference.The obtained solution was consistent with the solution from the elastic-brittle plastic drop model under the equal modulus theory.On the other hand,when the internal pressure was large,the tangential stress was changed.The surrounding rock can be divided into three zones,i.e.,tensile plastic zone(TPZ),tensile elastic zone(TEZ)and compressive elastic zone(CEZ).The tensile and compressive dual modulus had significant influence on the demarcation point between TEZ and CEZ.In addition,the strength drop and the dual modulus characteristic had a coupling effect on the stress distribution in the surrounding rock.The related achievements further enrich the theory of deep rock mechanics.展开更多
The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized ...The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.展开更多
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi...This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.展开更多
A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based prec...A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based precipitation model,employing the classical nucleation and growth theories,was adapted to deal with the precipitation kinetics (evolution of radius and volume fraction of precipitates for Ω phase) of aged Al-Cu-Mg-Ag alloys.The model gives an estimation of the precipitation kinetics (evolution of radius and density of precipitates for both θ' and Ω phases) of the alloy.The strengthening model based on Orowan mechanism was deduced.The microstructural development and strength predictions of the model are generally in good agreement with the experimental data.展开更多
Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-s...Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation.展开更多
Straightening machine is widely used for improving the quality of the defective mild steel plates.In general,the capacity of straightening machine is affected by material properties,the initial shape of the incoming p...Straightening machine is widely used for improving the quality of the defective mild steel plates.In general,the capacity of straightening machine is affected by material properties,the initial shape of the incoming plate and the plastic ratio.The mechanics model describing the capacity of the machine was developed.The deviation of the straightening capacity curves was studied.Then,the presented model was evaluated by comparative study to filed production data.Finally,the influences of overstretch,straightening speed,strengthening coefficient,elastic modulus,width of the plate on the straightening capacity were studied.It is convenient to determine whether the plate can be straightened or not by a series of straightening capacity curves.The straightening speed,width of the plate and elastic modulus of the material are more sensitive to the straightening capacity than the strengthening coefficient.展开更多
The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM ...The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.展开更多
The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been calculated by solving the relative Hamiltonian using variational method. We had investigated the dependen...The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been calculated by solving the relative Hamiltonian using variational method. We had investigated the dependence of the magnetization on temperature, magnetic field strength and confining frequency. The singlet-triplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the magnetization curves had been shown. The comparisons show that our results are in very good agreement with reported works.展开更多
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape...In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law, the model can predict the engineering elastic constant of a composite effectively.展开更多
Recovering functional ability after total knee arthroplasty (TKA) requires recovery of strength and voluntary activation. Short-term recovery of strength and activation are enhanced following a protocol combining st...Recovering functional ability after total knee arthroplasty (TKA) requires recovery of strength and voluntary activation. Short-term recovery of strength and activation are enhanced following a protocol combining strength training with neuromuscular electrical stimulation (NMES). The purpose of the study was to determine if a dose response curve could be constructed for patients who received NMES as part of their treatment after TKA. NMES dosage was quantified as the electrically evoked knee extensor torque, expressed as a percentage of the subject's maximal voluntary contraction. Dose-response curves were generated, with the associations between NMES training intensity and quadriceps strength, voluntary activation, and lean muscle cross-sectional area examined using Pearson Product-Moment Correlation Coefficients. Significantly, linear correlations were observed between NMES training intensity and both quadriceps strength and voluntary activation, but not lean muscle cross-sectional area. These results suggest that maximizing the elicited training force during rehabilitation will enhance short-term recovery following TKA.展开更多
The adaptive neuro-fuzzy inference systems(ANFIS)are widely used in the concrete technology.In this research,the compressive strength of light weight concrete was determined.To this end,the scoria percentage and curin...The adaptive neuro-fuzzy inference systems(ANFIS)are widely used in the concrete technology.In this research,the compressive strength of light weight concrete was determined.To this end,the scoria percentage and curing day variables were used as the input parameters,and compressive strength and tensile strength were used as the output parameters.In addition,100 patterns were used,70%of which were used for training and 30%were used for testing.To assess the precision of the neuro-fuzzy system,it was compared using two linear regression models.The comparisons were carried out in the training and testing phases.Research results revealed that the neuro-fuzzy systems model offers more potential,flexibility,and precision than the statistical models.展开更多
Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K ...Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.展开更多
基金supported by the National Natural Science Foundation of China (21573232, 21576251, 21676269)National Key Projects for Funda-mental Research and Development of China (2016YFA0202801)Department of Science and Technology of Liaoning province under contract of 2015020086–101~~
文摘The formations and transformations of the chemical bonds of reactants and intermediates on cata- lyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measure- ment of this evolved heat is helpful in terms of understanding the nature of the interactions be- tween the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the im- portant role of microcalorimetry in understanding catalytic performance from the energetic point of view.
基金The Natural Science Foundation of Jiangsu Province(No.BK2011618)the National Key Technology R&D Program of China during the12th Five-Year Plan Period(No.2012BAJ01B02)
文摘This study aims to quantify the influence of the amount of cement and chloride salt on the unconfined compression strength (UCS) of Lianyungang marine clay. The clays with various sodium chloride salt concentrations were prepared artificially and stabilized by ordinary Portland cement with various contents. A series of UCS tests of cement stabilized clay specimen after 28 d curing were carried out. The results indicate that the increase of salt concentration results in the decrease in the UCS of cement-treated soil. The negative effect of salt concentration on the strength of cement stabilized clay directly relates to the cement content and salt concentration. The porosity-salt concentration/cement content ratio is a fundamental parameter for assessing the UCS of cement-treated salt-rich clay. An empirical prediction model of UCS is also proposed to take into account the effect of salt concentration. The findings of this study can be referenced for the stabilization improvement of chloride slat- rich soft clay.
文摘In this paper the heat withstanding mechanism of heat-resisting aluminum alloy conductor is discussed, the types and performance of the conductor and its application on transmission lines are analyzed and introduced, and suggestions on accelerating exploitation and application of the conductor are put forward.
基金Foundation item: Supported by the Natural Science Foundation of China(10871216) Supported by the Natural Science Foundation Project of CQ CSTC(2008BB0346, 2007BB0441) Supported by the Excellent Young Teachers Program of Chongqing Jiaotong University(EYT08-016) Acknowledgement The author would like to thank the anonymous referee for the valuable remarks that helped considerably to correct and to improve the presentation.
文摘In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA065003)the National Natural Science Foundation of China(No.21276011)the Ph.D.Programs Foundation of Ministry of Education of China(200800100001)
文摘Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes,pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing attention and still remains challenging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification(controlling of ambient humidity), were employed and proved to be both effective. The regeneration frequency of the filter could be reduced by 55% with ultrasonic atomization, while steam humidification could lead to a 78% reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an optimized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m-2upon the ultrasonic atomization and 720 g·m-2upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.
基金Projects(51774196,52074169)supported by the National Natural Science Foundation of China。
文摘Aiming at the circular chamber under uniform stress field in deep energy storage and mining,analytical solutions of stress and plastic zone of the surrounding rock under different far-field stress and internal pressure were derived based on bi-modulus theory and the elastic-brittle-ideal plastic constitutive model.Evolution trend of the elasticplastic stress and plastic region with different elastic constant ratios and residual strength coefficients were analyzed in details.Results revealed that when the internal pressure was small,the three-direction principal stress was compressive stress and the stress field distribution of the surrounding rock was not affected by the moduli difference.The obtained solution was consistent with the solution from the elastic-brittle plastic drop model under the equal modulus theory.On the other hand,when the internal pressure was large,the tangential stress was changed.The surrounding rock can be divided into three zones,i.e.,tensile plastic zone(TPZ),tensile elastic zone(TEZ)and compressive elastic zone(CEZ).The tensile and compressive dual modulus had significant influence on the demarcation point between TEZ and CEZ.In addition,the strength drop and the dual modulus characteristic had a coupling effect on the stress distribution in the surrounding rock.The related achievements further enrich the theory of deep rock mechanics.
文摘The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.
基金Project(KF2029)supported by the State Key Laboratory of Automotive Safety and Energy(Tsinghua University),ChinaProject(102253)supported partially by the Innovate UK。
文摘This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.
基金Project(2005CB623705-04) supported by the National Basic Research Program of ChinaProject(1810-752300020) supported by Central South University and Ministry of Education of China for the Domestic Exchange PhD student
文摘A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based precipitation model,employing the classical nucleation and growth theories,was adapted to deal with the precipitation kinetics (evolution of radius and volume fraction of precipitates for Ω phase) of aged Al-Cu-Mg-Ag alloys.The model gives an estimation of the precipitation kinetics (evolution of radius and density of precipitates for both θ' and Ω phases) of the alloy.The strengthening model based on Orowan mechanism was deduced.The microstructural development and strength predictions of the model are generally in good agreement with the experimental data.
基金Project(2012CB214905)supported by the National Basic Research Program of ChinaProject(51074157)supported by the National Natural Science Foundation of China
文摘Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation.
文摘Straightening machine is widely used for improving the quality of the defective mild steel plates.In general,the capacity of straightening machine is affected by material properties,the initial shape of the incoming plate and the plastic ratio.The mechanics model describing the capacity of the machine was developed.The deviation of the straightening capacity curves was studied.Then,the presented model was evaluated by comparative study to filed production data.Finally,the influences of overstretch,straightening speed,strengthening coefficient,elastic modulus,width of the plate on the straightening capacity were studied.It is convenient to determine whether the plate can be straightened or not by a series of straightening capacity curves.The straightening speed,width of the plate and elastic modulus of the material are more sensitive to the straightening capacity than the strengthening coefficient.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51871043)supported by the National Natural Science Foundation of ChinaProject(N180212010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.
文摘The magnetization of two interacting electrons confined in a quantum dot presented in a magnetic field had been calculated by solving the relative Hamiltonian using variational method. We had investigated the dependence of the magnetization on temperature, magnetic field strength and confining frequency. The singlet-triplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the magnetization curves had been shown. The comparisons show that our results are in very good agreement with reported works.
基金Funded by Academician Foundation of Chongqing Project (2002-6285).
文摘In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law, the model can predict the engineering elastic constant of a composite effectively.
文摘Recovering functional ability after total knee arthroplasty (TKA) requires recovery of strength and voluntary activation. Short-term recovery of strength and activation are enhanced following a protocol combining strength training with neuromuscular electrical stimulation (NMES). The purpose of the study was to determine if a dose response curve could be constructed for patients who received NMES as part of their treatment after TKA. NMES dosage was quantified as the electrically evoked knee extensor torque, expressed as a percentage of the subject's maximal voluntary contraction. Dose-response curves were generated, with the associations between NMES training intensity and quadriceps strength, voluntary activation, and lean muscle cross-sectional area examined using Pearson Product-Moment Correlation Coefficients. Significantly, linear correlations were observed between NMES training intensity and both quadriceps strength and voluntary activation, but not lean muscle cross-sectional area. These results suggest that maximizing the elicited training force during rehabilitation will enhance short-term recovery following TKA.
文摘The adaptive neuro-fuzzy inference systems(ANFIS)are widely used in the concrete technology.In this research,the compressive strength of light weight concrete was determined.To this end,the scoria percentage and curing day variables were used as the input parameters,and compressive strength and tensile strength were used as the output parameters.In addition,100 patterns were used,70%of which were used for training and 30%were used for testing.To assess the precision of the neuro-fuzzy system,it was compared using two linear regression models.The comparisons were carried out in the training and testing phases.Research results revealed that the neuro-fuzzy systems model offers more potential,flexibility,and precision than the statistical models.
文摘Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.