期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
JPEG量化步长估计综述
1
作者 程鑫 王金伟 +4 位作者 王昊 罗向阳 李晓龙 朱国普 马宾 《信息安全学报》 CSCD 2024年第4期150-162,共13页
随着JPEG(Joint Photographic Experts Group)格式的图片在网络存储和传输中的广泛应用,基于JPEG格式的篡改、拼接等恶意操作也层出不穷,利用JPEG图像特性的研究受到越来越多的关注。其中,JPEG图像特性与量化步长息息相关。如果,JPEG压... 随着JPEG(Joint Photographic Experts Group)格式的图片在网络存储和传输中的广泛应用,基于JPEG格式的篡改、拼接等恶意操作也层出不穷,利用JPEG图像特性的研究受到越来越多的关注。其中,JPEG图像特性与量化步长息息相关。如果,JPEG压缩后的图像以位图的形式进行保存,研究者无法直接获取到量化步长,从而无法有效地分析JPEG图像特性。因此,对于量化步长的估计在数字图像取证领域越来越受到关注。本文首先介绍了量化步长估计的研究背景,并将量化步长估计问题分成两类问题:单压缩图像的量化步长估计和重压缩图像的首次量化步长估计。其次,在经典的JPEG压缩模型基础上分别了给出了这两类问题的量化步长估计模型,并对每类问题的各种现有方法进行了详细介绍和梳理。随后,在相同实验环境下对经典算法进行了实验,并对经典算法进行了相应的分析与评价。实验结果表明:在单压缩图像的量化步长估计任务中,现有技术相对成熟并且部分算法估计准确率高于90%;但是,在对齐重压缩图像的首次量化步长估计任务中,现有方法仅能估计低频、中频的量化步长,并且当首次与第二次的压缩质量因子相近时,估计准确率较低;在非对齐重压缩图像的首次量化步长估计任务中,由于网格偏移会增加估计量化步长的困难,导致算法在非对齐重压缩上性能较差。最后,指出了量化步长估计中有待进一步解决的问题和发展趋势。 展开更多
关键词 数字取证 JPEG压缩 量化步长估计 DCT系数分析 深度学习取证
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部