For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
A population of 180 recombinant inbred lines (RILs) was developed by single seed descended from the cross of high yield Upland cotton (Gossypium hirsutum L.) varieties Zhongmiansuo12 (ZMSI2) and 8891, the two pa...A population of 180 recombinant inbred lines (RILs) was developed by single seed descended from the cross of high yield Upland cotton (Gossypium hirsutum L.) varieties Zhongmiansuo12 (ZMSI2) and 8891, the two parents of Xiangzamian2 (XZM2). A genetic linkage map consisting of 132 loci and covering 865.20 cM was constructed using the RIL population chiefly with SSR markers. Yield and yield components were investigated for RILs in three environments in China. The purpose of the present research was to analyze the relationship between yield and its components and to map QTL for yield and yield components in cotton. QTL were tagged with data sets from single environment (separate analysis) and a set of data from means of the three environments (joint analysis). A total of 34 QTL for yield and yield components were independently detected in three environments, whereas fifteen QTL were found in joint analysis. Notably, a stable lint percentage QTL qLP-A10-1 was detected both in joint analysis and in two environments of separate analysis, which might be of special value for marker-assisted selection. The QTL detected in the present study provide new information on improving yield and yield components. Results of path analysis showed that bolls/plant had the largest contribution to lint yield, which is consistent with the mid-parent heterosis value in F1. Accordingly, in cotton breeding, bolls/plant can be considered first and other yield components measured as a whole to implement variety enhancement and hybrid selection of cotton.展开更多
ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 ...ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 g/L fulvic acid (FA) before sowed. Then, the rice morphological indices, leaf chlorophyll content, photosynthesis parameters, root activity and chlorophyll fluorescence parameters were measured in the following field studies. ResultCompared with the control, the leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance and dry matter weight and some fluorescence parameters such as the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), excitation energy capture efficiency of opened PSII reaction center (Fv’/Fm’) and efficiency of the open reaction centre (ΦPS II) increased by different levels at both jointing stage and heading stage of direct seeding rice, whose seeds were soaked by FA with different concentrations. High FA concentration (4-6 g/L) significantly increased the cultivated rice leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and dry matter weight by 10.32% -22.88% , 5.88% -13.11% , 12.16% -26.84% , 11.43% -88.46% , 10.63% -21.63% , 18.49% -19.68% , respectively, thereby improving the physiological function and light energy transform efficiency of rice at the growth stage. With FA concentration increasing, the yield, effective panicles, grain number per panicle and seed setting rate were increased significantly compared with the control by 17.52%-18.71%, 3.46%-3.85%, 6.30%- 6.51% and 7.82%-8.69% respectively. ConclusionSoaking rice seed with FA could be considered as an effective way to improve the rice competitiveness at early growth stage.展开更多
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金This work was supported by the National Science Foundation for Outstanding Youth Scholars (No. 30025029), Chinese National Programs for High Technology Research and Development (No. 2002AA207006), the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions, and Program for Changjiang Scholars and Innovative Research Team in University of MOE, China.
文摘A population of 180 recombinant inbred lines (RILs) was developed by single seed descended from the cross of high yield Upland cotton (Gossypium hirsutum L.) varieties Zhongmiansuo12 (ZMSI2) and 8891, the two parents of Xiangzamian2 (XZM2). A genetic linkage map consisting of 132 loci and covering 865.20 cM was constructed using the RIL population chiefly with SSR markers. Yield and yield components were investigated for RILs in three environments in China. The purpose of the present research was to analyze the relationship between yield and its components and to map QTL for yield and yield components in cotton. QTL were tagged with data sets from single environment (separate analysis) and a set of data from means of the three environments (joint analysis). A total of 34 QTL for yield and yield components were independently detected in three environments, whereas fifteen QTL were found in joint analysis. Notably, a stable lint percentage QTL qLP-A10-1 was detected both in joint analysis and in two environments of separate analysis, which might be of special value for marker-assisted selection. The QTL detected in the present study provide new information on improving yield and yield components. Results of path analysis showed that bolls/plant had the largest contribution to lint yield, which is consistent with the mid-parent heterosis value in F1. Accordingly, in cotton breeding, bolls/plant can be considered first and other yield components measured as a whole to implement variety enhancement and hybrid selection of cotton.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303022)National Key Technology Research and Development Program during the 12th Five-Year Plan Period(2012BAD19B02)~~
文摘ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 g/L fulvic acid (FA) before sowed. Then, the rice morphological indices, leaf chlorophyll content, photosynthesis parameters, root activity and chlorophyll fluorescence parameters were measured in the following field studies. ResultCompared with the control, the leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance and dry matter weight and some fluorescence parameters such as the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), excitation energy capture efficiency of opened PSII reaction center (Fv’/Fm’) and efficiency of the open reaction centre (ΦPS II) increased by different levels at both jointing stage and heading stage of direct seeding rice, whose seeds were soaked by FA with different concentrations. High FA concentration (4-6 g/L) significantly increased the cultivated rice leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and dry matter weight by 10.32% -22.88% , 5.88% -13.11% , 12.16% -26.84% , 11.43% -88.46% , 10.63% -21.63% , 18.49% -19.68% , respectively, thereby improving the physiological function and light energy transform efficiency of rice at the growth stage. With FA concentration increasing, the yield, effective panicles, grain number per panicle and seed setting rate were increased significantly compared with the control by 17.52%-18.71%, 3.46%-3.85%, 6.30%- 6.51% and 7.82%-8.69% respectively. ConclusionSoaking rice seed with FA could be considered as an effective way to improve the rice competitiveness at early growth stage.