期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
接触式干涉仪工作台平面度在量块长度测量中引入误差的探讨 被引量:2
1
作者 韩雪冰 《计量与测试技术》 2018年第6期118-119,122,共3页
通过JJG 101-2004《接触式干涉仪》和JJG146-2011《量块》检定规程,本文探讨了接触式干涉仪工作台平面度在量块长度测量中的引入误差,结果显示使用接触式干涉检定量块长度时,在极端条件下,工作台平面度引入的误差较大,可能会影响量块的... 通过JJG 101-2004《接触式干涉仪》和JJG146-2011《量块》检定规程,本文探讨了接触式干涉仪工作台平面度在量块长度测量中的引入误差,结果显示使用接触式干涉检定量块长度时,在极端条件下,工作台平面度引入的误差较大,可能会影响量块的合格评定。 展开更多
关键词 量块长度 检定 接触式干涉仪 平面度 误差
下载PDF
用改造后的柯氏干涉仪测量量块中心长度的测量不确定度评定 被引量:6
2
作者 倪育才 邵宏伟 刘香斌 《现代计量测试》 1999年第6期7-16,共10页
通过用633nm 短频He-Ne 激光代替氪灯,提高小数测量的准确度等措施,对常规柯氏干涉仪进行了改造,结果获得测量量块中心长度的标准不确定度为uc= (5.5nm )2+ (8.3×10- 8L)2。
关键词 柯氏干涉仪 测量不确定度 量块中心长度
下载PDF
相对测量法测量量块中心长度误差分析 被引量:1
3
作者 左继海 《同煤科技》 2008年第1期35-36,共2页
分析了相对测量法量块测量过程中误差的来源和大小。
关键词 长度计量 相对测量法 量块中心长度 测量误差
下载PDF
三等量块比对测量值不确定度的评估 被引量:3
4
作者 陈巧巧 丘卉 +1 位作者 黄万钧 鲁力维 《计量与测试技术》 2018年第9期116-118,共3页
简述比对要求和方法,详细分析了测量量块中心长度的主要误差来源,包括:标准量块中心长度测量不确定度分量、比较差值估算的不确定度分量、标准量块与被测量块膨胀系数差给出的分量、标准量块与被测量块间的温度差给出的分量。并评定这... 简述比对要求和方法,详细分析了测量量块中心长度的主要误差来源,包括:标准量块中心长度测量不确定度分量、比较差值估算的不确定度分量、标准量块与被测量块膨胀系数差给出的分量、标准量块与被测量块间的温度差给出的分量。并评定这些误差来源对测量值的影响。 展开更多
关键词 比对 量块中心长度 不确定度 误差
下载PDF
关于新旧量块检定规程的主要区别 被引量:1
5
作者 吕小洁 《计量与测试技术》 2008年第1期53-54,共2页
《量块检定规程JJG146-2003》经国家技术监督局批准,自2004年3月23日开始实施新规程。本文介绍了新旧量块检定规程的主要区别。
关键词 量块长度 变动量 表面粗糙度 平面度
下载PDF
Root Growth of the Annual Tillering Grass Panicum miliaceum in Heterogeneous Nutrient Environments 被引量:2
6
作者 何维明 董鸣 《Acta Botanica Sinica》 CSCD 2001年第8期846-851,共6页
To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on ... To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on the root growth of P. miliaceum when its roots were allowed to extend from original patch into destination patch. When the nutrient levels in the original patches were low, coarse root biomass ratio (coarse root biomass in the D/total coarse root biomass), coarse root length ratio (coarse root length in the D/total coarse root length), coarse root surface area ratio (coarse root surface area in the D/total coarse root surface area) and fine root length ratio (fine root length in the D/total fine root length) were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, while fine root length, fine root length density, fine root surface index, and fine root surface area density were smaller in the former than in the latter. When the nutrient levels in the original patches were high, fine root length, fine root length density, fine root surface area index and fine root surface density were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, coarse roots did not respond to the nutrient levels in the destination patches significantly. When the roots extended from the original patches with the same nutrient level into the destination patches with contrasting nutrient levels, fine root biomass and its percentage allocation did not respond to the nutrient levels in the destination patches significantly, whereas both root length and root surface area did. This indicates that the fine roots of P. miliaceum responded to difference in nutrient supply by plasticity in their length and surface area, rather than in their root biomass. 展开更多
关键词 Panicum miliaceum nutrient patch root biomass root length root surface area root density
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部